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In many domains across experimental psychology and 
cognitive science, it has proved difficult to assess how the 
cognitive system processes information in real time. Many 
of the phenomena in which researchers are interested occur 
quite rapidly, spanning only several hundreds of millisec-
onds. To understand how information processing unfolds 
across fractions of a second requires an online measure 
with substantial temporal resolution. Eyetracking and 
event-related brain potential (ERP) measures have been 
used, but these are expensive and often not suitable for 
many empirical questions motivating psychologists and 
cognitive scientists. Alternatively, which is often the case, 
researchers attempt to infer about processing by using 
outcome-based measures, such as reaction times (RTs) or 
error rates. These are inexpensive to record, needing only 
computer software, but can be limited in their ability to 
make inferences about what sort of perceptual-cognitive 
processing is occurring across time—especially how this 
processing evolves over time.

We believe that these methodological limitations have 
implications for our perspectives on mental phenomena 
and the development of theories and models to explain 
them. Because the fields of psychology and cognitive sci-
ence have been somewhat unequipped to assess the real-
time evolution of psychological responses with sufficient 
online measures, sometimes researchers have been left to 
keep the temporal dynamics of mental processes out of 
the theoretical and empirical spotlight. For instance, in the 

domain of categorization phenomena, there is now a wide 
proliferation of theories describing the static representa-
tion of category knowledge, but the temporal dynamics 
of processing leading up to categorical responses have 
gone virtually unexplored (see Dale, Kehoe, & Spivey, 
2007). More broadly, in many niches across psychology 
and cognitive science, mental processes are often treated 
as proceeding in abstract discrete sequences rather than 
as being time dependent and temporally dynamic (Spivey, 
2007; Spivey & Dale, 2004, 2006). Part of the story may 
be researchers’ genuine subscription to discrete represen-
tational or symbolicist accounts of cognition (see, e.g., 
Dietrich & Markman, 2003; Newell, 1980; Pylyshyn, 
1984), but some of this may be due to the simple fact 
that the methodological toolbox has not yet seen some-
thing practical, inexpensive, and time sensitive enough to 
flesh out the real-time dynamics of mental phenomena. 
Although offline methods have often been used to infer 
about these dynamics (e.g., priming, backward mask-
ing), online methods are scarce. In the present article, we 
will describe an online method to assess real-time mental 
processing and a graphics-based software package to let 
any psychologist or cognitive scientist easily harness the 
power of it.

Hand in Motion Reveals Mind in Motion
One possible way to tap into the real-time processing 

eventuating in the sorts of responses that psychologists 
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mouse-tracking method for assessing real-time processing in psychological tasks. By recording the streaming 
x-, y-coordinates of the computer mouse while participants move the mouse into one of multiple response al-
ternatives, motor dynamics of the hand can reveal the time course of mental processes. MouseTracker provides 
researchers with fine-grained information about the real-time evolution of participant responses by sampling 
60–75 times/sec the online competition between multiple response alternatives. MouseTracker allows research-
ers to develop and run experiments and subsequently analyze mouse trajectories in a user-interactive, graphics-
based environment. Experiments may incorporate images, letter strings, and sounds. Mouse trajectories can be 
processed, averaged, visualized, and explored, and measures of spatial attraction/curvature, complexity, velocity, 
and acceleration can be computed. We describe the software and the method, and we provide details on mouse 
trajectory analysis. We validate the software by demonstrating the accuracy and reliability of its trajectory and 
reaction time data. The latest version of MouseTracker is freely available at http://mousetracker.jbfreeman.net.

J. B. Freeman, jon.freeman@tufts.edu



MouseTracker Software for Studying Real-Time Mental Processing        227

based and graded constraint-based accounts of spoken 
word recognition. Using this computer mouse-tracking 
method, such evidence for continuous temporal dynam-
ics has been extended to other domains, such as semantic 
categorization (Dale et al., 2007) and syntactic ambiguity 
resolution (Farmer, Anderson, & Spivey, 2007).

Recently, we have used this mouse-tracking method to 
explore the temporal dynamics in real-time person per-
ception. In one set of studies, participants were presented 
with typical and atypical male and female faces and were 
asked to categorize the target’s sex using the computer 
mouse (Freeman, Ambady, Rule, & Johnson, 2008). The 
top left and top right corners displayed “Male” and “Fe-
male.” Atypical faces included, for instance, a man’s face 
that had been feminized using a morphing algorithm, or 
a woman’s face containing a sex-atypical cue (short hair). 
When categorizing the sex of atypical faces (by mov-
ing the mouse from the bottom center to the top left or 
top right corners), participants’ mouse trajectories were 
continuously attracted toward the opposite sex category 
before settling into the correct categorical response. For 
instance, when categorizing the sex of a masculinized fe-
male face (relative to a feminized female face), the mouse 
gravitated more toward the “Male” response before finally 
clicking on “Female.” Thus, participants’ social catego-
rizations were the result of temporally dynamic compe-
tition, where partially active social category representa-
tions (male and female) simultaneously competed over 
time until gradually settling onto construals of others. We 
call this a dynamic continuity account of person construal 
(Freeman et al., 2008).

In a subsequent study, we used this method to show that 
this continuously evolving mixture of social category rep-
resentations (male and female) during sex categorization 
may continuously cascade into the partial and parallel ac-
tivation of associated stereotype knowledge (Freeman & 
Ambady, 2009). For instance, when deciding which of the 
two sex stereotypes (caring, a female stereotype, or ag-
gressive, a male stereotype) better described a man whose 
face contained feminized cues, participants’ mouse trajec-
tories were continuously attracted to the caring alternative 
before settling into aggressive (Figure 1). We interpreted 
this as evidence for the partial and parallel activation of 
stereotypes tied to alternate social categories. Simultane-
ously and partially active stereotype knowledge belonging 
to multiple social categories was triggered across ongoing 
perceptual accrual of the face, and this fluctuating mix-
ture settled over time onto ultimate judgments of others. 
A mouse-tracking paradigm has also been recently used to 
explore the time course of race categorization (Freeman, 
Pauker, Apfelbaum, & Ambady, 2010) and social attitude 
activation (Wojnowicz, Ferguson, Dale, & Spivey, 2009).

In short, computer mouse-tracking can afford research-
ers valuable information about the temporal dynamics of 
a variety of psychological processes. Indeed, reflecting 
on Spivey et al.’s (2005) aforementioned findings, Mag-
nuson (2005, p. 9996) commented that “the continuous 
data provided by the mouse-tracking technique . . . [have] 
the potential to address not only specialized theoretical 
debates but also some of the biggest questions facing cog-

and cognitive scientists care about—a categorization, 
the recognition of an emotion or spoken word, a lexical 
or evaluative decision, a social judgment—would be to 
look at participants’ reaching arm movements as they 
make their way into settling into one of multiple response 
alternatives. Although motor responses are thought, ac-
cording to a classical perspective, to be the end result of 
a feed-forward pipeline from perception  cognition  
action (temporal cortex  “association cortex”  premo-
tor areas), there is now abundant evidence that a motor 
response, such as the trajectory of a reaching arm move-
ment, is continuously updated by perceptual-cognitive 
processing over time (e.g., Abrams & Balota, 1991; Gold 
& Shadlen, 2001; Song & Nakayama, 2006, 2008; Tipper, 
Howard, & Houghton, 1998). For example, as participants 
make their way toward grabbing an object that happens 
to move while the arm is still in motion, the trajectory of 
the arm is continuously adjusted in midair to seamlessly 
arrive at the object’s new point in space (Goodale, Pelis-
son, & Prablanc, 1986). Similarly, as participants move a 
finger to point at a target, the finger’s trajectory exhibits 
a temporally dynamic influence from subliminal primes 
that smoothly alters its curvature (Finkbeiner, Song, Na-
kayama, & Caramazza, 2008; Schmidt, 2002). These find-
ings and others reviewed elsewhere (Spivey, Richardson, 
& Dale, 2008) have demonstrated that continuous motor 
responses, such as the reach of an arm, are not simply the 
endpoints of sensory and cognitive subsystems. Rather, 
the dynamics of action are part and parcel with the dy-
namics of perception and cognition. Thus, fortunately for 
us, online motor responses that are sampled fast enough 
may be informative as to the time course of perceptual-
cognitive processing.

Computer Mouse-Tracking
Spivey, Grosjean, and Knoblich (2005) initially used 

online motor responses to understand real-time process-
ing in the context of spoken word recognition by recording 
the streaming x-, y-coordinates of the computer mouse. 
Participants moved the mouse from the bottom center 
of the screen to either the top left or top right corners, 
corresponding to the recognition of two different words. 
For instance, a picture of a candle appeared in the top left 
corner, and a picture of a candy appeared in the top right 
corner while participants heard the spoken phrase, “Click 
the candle.” When the distractor object corresponded to 
a word whose initial phoneme overlapped with the spo-
ken word (e.g., candy for the word candle), but not when 
they did not overlap (e.g., pickle for the word candle), 
participants’ mouse movements showed a conspicuous 
curvature toward the distractor (e.g., candy) before set-
tling into the correct alternative (e.g., candle). As par-
ticipants heard the word “candle,” the ongoing accrual 
of “can . . .” partially activated lexical representations of 
both “candle” and “candy,” causing mouse movements 
to gravitate somewhat toward “candy” before smoothly 
settling into “candle.” Thus, the acoustic–phonetic input 
of the spoken word was taken up continuously over time 
rather than accrued in discrete steps. This had important 
implications for distinguishing between discrete stage-
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running Windows XP/Vista/7. For downloading and other 
information, visit http://mousetracker.jbfreeman.net. It is 
copyrighted by the first author and protected by an end-
user license agreement. The agreement grants users a per-
petual and nonexclusive license to use the software, but 
requires that the users do not modify, reproduce, license, 
or sublicense the software. It contains three programs: A 
data collection program (Runner) allows researchers to 
specify stimuli files, timing, and response options, among 
other parameters, and run participants through studies. A 
graphics-based program (Designer) may be used to set up 
the visual layout and response options of an experiment. 
Finally, an analysis program (Analyzer) can then import 
participants’ data from such studies and visualize, pro-
cess, and analyze the mouse movements.

MouseTracker is able to handle many different kinds of 
multiple-choice decision tasks that are uniquely custom-
ized by the researcher. In terms of analysis, the program 
can handle 1 individual participant’s data or aggregate 
across a whole group of participants’ data at the same time. 
MouseTracker automatically performs space-rescaling on 
mouse trajectories. It can analyze trajectory data either in 
normalized time or in raw time. It groups mouse trajecto-
ries by specified conditions and visualizes all trajectories 
within specific conditions for side-by-side visual com-
parisons. Trajectories can be explored and individually 
selected for detailed information or exclusion. Mouse-

nitive science.” The current methodological standard has 
been the RT (the moment the mouse clicks on a response). 
When only RTs are used, however, fine-grained temporal 
information about how a participant’s response evolves 
over time can be lost. Using mouse-tracking, the real-time 
development of a participant’s ultimate response can be 
sampled approximately 60–75 times every second (60–
75 Hz). Current tasks that measure RTs could easily be 
tweaked for recording continuous streams of motor output 
that culminate in those same responses. In addition, novel 
tasks could be designed to collect these motor streams for 
answering new empirical questions and endeavoring first 
interrogations into the real-time dynamics of mental activ-
ity in a variety of domains. Below, we will describe a soft-
ware package that the first author has developed to allow 
researchers to do this in a comprehensive and graphics-
based manner.

MouseTracker

MouseTracker is a software package that allows re-
searchers to measure real-time hand movements from 
the streaming x-, y-coordinates of the computer mouse 
(while behavioral responses are made on the basis of im-
ages, letter strings, and/or sounds), and subsequently vi-
sualize, process, and analyze them (as was done in the 
aforementioned studies). It can be installed on computers 
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Figure 1. In a prior study, Freeman and Ambady (2009) found that when stereotyping sex-
atypical faces (e.g., a man with feminized cues), participants’ mouse trajectories were con-
tinuously attracted to the stereotype of the opposite sex (e.g., caring) before settling into their 
ultimate response (e.g., aggressive). As is indexed by maximum deviation (bar graph), the 
attraction of trajectories for sex-atypical faces to the opposite sex stereotype was statistically 
significant. From “Motions of the Hand Expose the Partial and Parallel Activation of Stereo-
types,” by J. B. Freeman and N. Ambady, 2009, Psychological Science, 20, p. 1185. Copyright 
2009 by Wiley-Blackwell Publishing. Adapted with permission.



MouseTracker Software for Studying Real-Time Mental Processing        229

the free registration, a shortcut to the help file, and a short-
cut to the license agreement. The free registration screen 
appears after the installation has completed, but this can 
also be launched using the Start Menu shortcut. Users must 
complete the free registration before proceeding to use the 
Runner, Designer, and Analyzer software programs.

What Are Mouse Trajectory Data and  
How Are They Analyzed?

During every trial, the Runner program records the real-
time x-, y-coordinates of the computer mouse. Because the 
sampling rate is approximately 60–75 Hz (see the Influ-
ences of Hardware section for a discussion of the rate vari-
ability), about every 13–16 msec during the live portion of 
a trial, three pieces of information are recorded: raw time 
(how many milliseconds have elapsed), the x-coordinate 
of the mouse (in pixels), and the y-coordinate of the mouse 
(in pixels). Because these mouse trajectory data are rich—
containing between 60 and 75 x-, y-coordinate pairs every 
second—there are many ways to carve up the data, vari-
ous measures that could be computed, and several tempo-
ral and spatial scales of possible analysis. Below, we will 
describe standard analytic approaches, which have been 
consistently used in prior mouse-tracking studies and are 
fully implemented in MouseTracker. However, there are 
an infinite number of ways in which one could analyze 
mouse trajectories, and a MouseTracker user could con-
duct these externally using the outputted data.

Space rescaling. First, all trajectories are rescaled into 
a standard MouseTracker coordinate space, which we 
have used in prior work (Freeman & Ambady, 2009; Free-
man et al., 2008; Freeman et al., 2010). A diagram of this 
coordinate space appears in Figure 2. The top left corner 
of the screen corresponds to [21.00, 1.50], and the bottom 
right corner corresponds to [1.00, 0.00], leaving the start 
location of the mouse (the bottom center) with the coor-
dinates [0.00, 0.00]. This standard space thus represents a 

Tracker generates mean trajectories of conditions and 
computes by-trial indices of spatial attraction/curvature 
and complexity. It also conveniently z-normalizes these 
(pooling both across and within conditions) for distribu-
tional analyses. If trajectories are analyzed in raw time, 
MouseTracker can also generate velocity and accelera-
tion profiles. All of these data are then able to be exported 
into a comma-separated-value (.CSV) file for analyzing in 
Excel or other software, prepared in a way that is ready for 
hypothesis testing and further analysis.

Overall Structure
A researcher designs an experiment using a .CSV file 

in Excel (or some other program), which specifies dis-
play and experimental parameters and lists stimuli and 
responses. The Designer program can be used to edit the 
.CSV file’s display parameters and response options in a 
graphics-based manner. In all experiments, several things 
remain constant. On each trial, a “Start” button appears 
at a designated location on the screen. After a participant 
presses this button, the trial begins. The participant then 
moves the mouse from the “Start” button to one of the 
response alternatives. The “Start” button and response al-
ternatives may be placed anywhere on the screen. Once 
an experiment .CSV file has been designed, it can be ex-
ecuted by the Runner program, which will run the experi-
ment and record mouse trajectories. Once the participant 
finishes, mouse movement data undergo several auto-
matic transformations and are subsequently outputted to a 
MouseTracker data file (.MT). This .MT data file is then 
loaded into the Analyzer program for a graphics-based 
analysis of the recorded mouse trajectories. This .MT 
data file is inherently a .CSV file, which can be manually 
read in Excel. It contains trial-by-trial information about 
raw x-, y-coordinates and other information about trans-
formed data, in addition to standard information about 
RTs (the moment the mouse clicks on a response), ini-
tiation times (the moment the mouse is first moved), and 
stimuli, among others. Once the .MT file, or multiple .MT 
files, are loaded into Analyzer, trajectories can be visu-
ally explored, averaged, and manually or systematically 
excluded, and indices of spatial attraction/curvature  and 
complexity may be computed. If trajectories are kept in 
raw time (rather than in normalized time), velocity and 
acceleration profiles are also available. In every particular 
analysis, two conditions (Condition 1 and Condition 2) are 
examined side by side and compared along with their mean 
trajectories. Time course data are also available. Finalized 
data are then exported to an output .CSV file, readable in 
Excel, which contains all of the data prepared in a way 
suitable for hypothesis testing and further analysis.

Installation
MouseTracker is installed using the self-extracting ex-

ecutable file obtained from the download Web site: http://
mousetracker.jbfreeman.net. Once the user agrees to the 
end-user license agreement and the installation is complete, 
several shortcuts are created in the Start Menu: a shortcut 
to the Runner program, a shortcut to the Designer program, 
a shortcut to the Analyzer program, a shortcut to complete 

Figure 2. Diagram of the MouseTracker standard coordinate 
space and the calculation of measures of spatial attraction to the 
opposite response alternative: maximum deviation (MD) and 
area under the curve (AUC).
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line). The area on the opposite side of the straight line is 
calculated as negative area. Figure 2 provides an illustra-
tion of how the MD and the AUC measures are calculated. 
An example trajectory is displayed in the figure, which 
heads rightward to the selected response (#2). The amount 
of spatial attraction toward an unselected response (#1) 
will be calculated. Also displayed is an idealized response 
trajectory (straight line) that is used to calculate the MD 
and the AUC. In prior studies, we have found that using 
the MD versus the AUC for the same data does not sub-
stantially change the results (Freeman et al., 2008). One 
observation, however, is that the AUC is a better index of 
the overall attraction toward the unselected alternative (in-
corporating all time steps), whereas MD is a better index 
of maximum attraction, but this attraction may be limited 
to fewer time steps.

Measuring complexity. Complexity arises in the be-
haviors of many dynamic biological systems, including the 
human brain (Spivey, 2007). In some cases, it may be help-
ful to measure the complexity of mouse trajectories. For ex-
ample, if both response alternatives simultaneously attract 
participants’ mouse trajectories (relative to only one), this 
additional stress might manifest as less smooth, more com-
plex, and fluctuating trajectories. Some mouse-tracking 
studies have used sample entropy to index complexity (e.g., 
Dale et al., 2007; McKinstry, Dale, & Spivey, 2008), and 
some have used “x-flips” (Dale, Roche, Snyder, & McCall, 
2008). MouseTracker calculates x-flips and y-flips, which 
are the number of reversals of direction along the respec-
tive axis. This captures the fluctuations in the hand’s vacil-
lation along the horizontal and vertical axes.

Distributional analyses. Some researchers may wish 
to examine the distribution of trajectories’ trial-by-trial spa-
tial attractions toward an unselected alternative (indexed 
by MD or AUC). This can be especially useful for formally 
determining the temporal nature of one condition’s stron-
ger attraction toward an unselected alternative relative to 
that in another condition. For instance, suppose that a re-
searcher finds that trajectories in Condition 1 are continu-
ously more attracted toward the unselected alternative than 
are trajectories in Condition 2. This is visually apparent by 
plotting the two mean trajectories and is statistically ap-
parent by a significant difference in MD or AUC between 
Condition 1 and Condition 2. Underlying this reliable con-
tinuous attraction effect, however, could be a subpopula-
tion of discrete-like errors biasing the results. For instance, 
if half of the trajectories in Condition 1 headed straight to 
the selected alternative, and the other half initially headed 
straight to the unselected alternative, followed by a sharp 
midflight correction redirecting the trajectory toward the 
selected alternative, the mean trajectories would exhibit 
a reliable attraction effect that appeared continuous, al-
though it was actually caused by several discrete-like er-
rors. If such a subpopulation of discrete-like errors were 
biasing the results, the distribution of Condition 1 would 
be bimodal (some trajectories show zero attraction, and the 
other trajectories show extreme attraction).

In prior work, we have empirically validated that the 
mouse-tracking paradigm afforded by MouseTracker and 
the computation of the bimodality coefficient (b; SAS In-

2 3 1.5 rectangle, which retains the aspect ratio of most 
computer screens. These space-rescaled trajectories may 
then be submitted to a time-normalization procedure (or 
retained in raw time).

Time normalization. Time normalization is often 
conducted because each recorded trajectory tends to have 
a different length. For instance, a trial lasting 800 msec 
will contain approximately 56 x-, y-coordinate pairs, but 
a trial lasting 1,600 msec will contain approximately 112 
x-, y-coordinate pairs (at 70 Hz). To permit averaging and 
comparison across multiple trials with different numbers 
of coordinate pairs, the x-, y-coordinates of each trajectory 
are time normalized into a certain number of time steps 
using linear interpolation (e.g., by default, 101, to permit 
100 time-normalized equal spaces between coordinate 
samples). Thus, the 56 coordinate pairs from the 800-msec 
trial would be fit to 101 pairs, just as the 112 pairs from 
the 1,200-msec trial would be fit to 101 pairs. Thus, each 
trajectory is normalized to have the same number of time 
steps (e.g., 101), and each time step has a corresponding 
x- and y-coordinate.

Averaging. Each participant’s mean trajectory for 
one condition is computed by averaging together all of 
the x-coordinates of trajectories in that condition at each 
time step, and all of the y-coordinates of trajectories in 
that condition at each time step. If data from multiple 
participants are being averaged together, the grand mean 
trajectories are computed by averaging together each par-
ticipant’s mean trajectories.

Measuring spatial attraction. These preprocessed 
and averaged mouse trajectory data could be used in many 
ways that depend on the research questions at hand. In 
many cases, one question is whether the trajectories for 
one condition travel closer to an unselected alternative 
relative to those in another condition. For instance, in the 
aforementioned studies (Freeman et al., 2008), we asked: 
When categorizing the sex of a masculinized woman’s 
face, are trajectories more attracted to the male category 
(on the opposite side of the screen) than they are when 
categorizing a feminized woman’s face? One approach 
would be to use 101 paired-samples t tests to compare the  
x-coordinate of participants’ mean trajectories for Con-
dition 1 versus Condition 2 at each individual time step. 
However, the issue of multiple comparisons arises (al-
though a bootstrapping method has been used; see Dale 
et al., 2007; Freeman et al., 2008) and, in many cases, re-
searchers would like to obtain a simpler by-trial index of 
the amount of attraction toward the unselected alternative.

Prior studies have used two measures, which are fully 
implemented in the MouseTracker: maximum devia-
tion (MD) and area under the curve (AUC). For both of 
these measures, MouseTracker first computes an idealized 
response trajectory (a straight line between each trajec-
tory’s start and endpoints). The MD of a trajectory is then 
calculated as the largest perpendicular deviation between 
the actual trajectory and its idealized trajectory out of all 
time steps. Thus, the higher the MD, the more the trajec-
tory deviated toward the unselected alternative. The AUC 
of a trajectory is calculated as the geometric area between 
the actual trajectory and the idealized trajectory (straight 
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As is shown in the histogram (Figure 3), we reliably de-
tected bimodality in the distribution of the AUC values 
in this combination condition (averaging across control 
and switch trials). This validated that the mouse-tracking 
paradigm and the computation of the b coefficient are sen-
sitive enough to identify this spurious pattern.

Bimodality may be tested by determining whether b . 
0.555. If b . 0.555, the distribution is considered to be 
bimodal, and if b # 0.555, it is considered to be unimodal. 
It is computed by the following equation:
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In the equation, g1 is skewness, g2 is kurtosis, and n is the 
number of observations. For testing bimodality, Mouse-
Tracker z-normalizes the MD and the AUC values of tri-
als within each participant, together across Condition 1 
and Condition 2, for convenience. In prior work, mouse-
tracking researchers have further alleviated concerns about 
latent bimodality by ensuring that the shapes of the two 
distributions are statistically indistinguishable. To accom-
plish this, the Kolmogorov–Smirnov test is used (avail-
able on the Web: www.physics.csbsju.edu/stats/KS-test 

stitute, 1989) have sufficient methodological and statisti-
cal sensitivity to detect bimodality in such a pattern of 
trajectories (Freeman et al., 2008, Study 3). In that study, 
we asked participants to make simple categorizations 
using the mouse-tracking paradigm. On half of the trials, 
trials proceeded normally and trajectories headed straight 
to the response (control trials). On the other half of the 
trials, however, once mouse movement was initiated, the 
response labels suddenly turned red and switched sides 
(switch trials). This required participants to generate ex-
treme trajectories appearing as discrete-like errors, where 
the direction had to be discontinuously reversed because 
of the responses’ switching sides. Figure 3 depicts the 
mean trajectory for control trials, the mean trajectories for 
switch trials, and a “combination” trajectory representing 
an average across both switch and control trials (all tra-
jectories are remapped rightward). This combination tra-
jectory showed an attraction effect toward the unselected 
response (in the figure, the top left corner) that appeared 
continuous, although it was actually caused by some tra-
jectories in the form of discrete-like errors and other tra-
jectories showing zero attraction. This demonstrated how 
one population of trajectories showing zero attraction and 
another population of trajectories showing extreme attrac-
tion can spuriously produce continuous attraction effects. 
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Figure 3. In a prior study, Freeman et al. (2008) found that averaging together across half of trajectories 
moving straight to the correct response (control trials) and half of trajectories making discrete-like errors 
(switch trials) spuriously produces continuous attraction. As is shown in the histogram, the distribution of 
AUC values in this combination condition including switch and control trials was bimodal (b . .555). This 
validated that the mouse-tracking paradigm and computation of the b coefficient are sensitive enough to 
identify this spurious pattern. From “Will a Category Cue Attract You? Motor Output Reveals Dynamic 
Competition Across Person Construal,” by J. B. Freeman, N. Ambady, N. O. Rule, and K. L. Johnson, 2008, 
Journal of Experimental Psychology: General, 137, p. 686. Copyright 2008 by the American Psychological 
Association. Adapted with permission.
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ing tasks when a touchpad is used rather than a mouse 
(Akamatsu & MacKenzie, 2002). Because the touchpad 
physically spans only a small area, tiny motions of the 
finger applied to the pad elicit much larger motions of the 
cursor on the screen, which leads to a more ballistic style 
of cursor movement. Because of the common occurrence 
of these larger, more ballistic movements in touchpad use, 
participants must unnaturally decrease the level of force 
applied to the touchpad during the final phase of trying 
to land the cursor on a target on screen (Akamatsu & 
MacKenzie, 2002). The result is less precise, jerkier cur-
sor movement with more errors. Thus, different motoric 
experiences of pointing devices beyond a standard mouse, 
such as a touchpad, are likely to affect the trajectories that 
MouseTracker can capture in terms of accuracy, precision, 
ballistic quality, and perhaps quantization effects.

Display and pointer device settings that could influence 
MouseTracker data include the speed of cursor movement 
and screen resolution, which are set in the Windows con-
trol panel. MouseTracker is compatible with any cursor 
speed and any screen resolution (provided that the resolu-
tion is supported by the display adapter). Higher screen 
resolutions create the opportunity for an experiment to 
have larger distances that the mouse must traverse to reach 
a target. Faster cursor speeds allow such distances to be 
traveled more quickly. At extremely high speeds, however, 
one can imagine that cursor movement becomes ballistic 
and jerky, which could potentially dampen the sensitivity 
of MouseTracker trajectory data.

Designing Experiments
Experiments are designed using a .CSV file. An ex-

ample and tutorial are provided with the software. There 
are two parts to an experiment .CSV file. In the first part, 
the user sets experimental and display parameters. In the 
second part, the user lists what stimuli are presented and 
what response options are given.

Display and experimental parameters. Various 
display and experimental parameters can be customized. 
These include: response-button width, height, location, 
and color; stimulus location; stimulus font style, size, and 
color (if using letter strings, e.g., words); whether to auto-
matically relocate the mouse to the bottom center portion 
of the screen after the “Start” button is pushed; initiation 
time screening (whether to alert participants if they initi-
ate movement too late); x-coordinate screening (whether 
to have participants rerun on trials in which they make 
extreme jolting movements toward the incorrect response 
alternative); RT deadlines; feedback on errors; intertrial 
interval durations; whether to mark a trial wrong when the 
mouse clicks on the incorrect response or hovers over it; 
and whether to freeze the mouse or let it move freely dur-
ing compound trials when multiple stimuli are sequenced. 
The Designer program can be used to edit the display pa-
rameters of the .CSV file in a graphics-based manner. To 
load Designer: Start Menu  Programs  MouseTracker 
 Designer.

Stimuli and response list. In the experiment .CSV 
file, stimuli and responses are entered into as many rows 

.html). For use with this test, MouseTracker conveniently 
z-normalizes the MD and the AUC values of trials within 
each participant, separately within Condition 1 and Con-
dition 2. This test, unlike the bimodality test, is inferential; 
if p , .05, the shapes of the two distributions reliably de-
part from one another.

Raw time analysis, velocity, and acceleration. A user 
can opt to retain trajectories in raw time (without time nor-
malization). If a raw time analysis is conducted, the user 
decides how many raw time bins to create between 0 msec 
and some cutoff (e.g., 1,500 msec). As with a normalized 
time analysis, trajectories are space rescaled. However, 
rather than generating a certain number of normalized time 
steps, MouseTracker generates a user-defined number of 
raw time steps. Trajectories are visualized and averaged, 
as in a normalized time analysis, but measures of spatial 
attraction/curvature and complexity (MD, AUC, x-flips, 
y-flips) are not available. Instead, velocity and accelera-
tion profiles are generated for each trajectory, and these 
profiles are averaged across all trials within a participant, 
separately for Condition 1 and Condition 2. They are also 
averaged across all participants, separately for Condition 1 
and Condition 2. This information can be plotted in the 
Analyzer program or viewed in the output .CSV file.

Raw time analyses can be important in a variety of sce-
narios. For instance, if participants are presented with an 
auditory stimulus of spoken words, a researcher might be 
interested to know the mouse’s behavior once a critical 
word is spoken (e.g., 400 msec after the beginning of a 
trial). Moreover, a researcher might simply want to exam-
ine for differences in mouse trajectories during a period of 
raw time (e.g., 700–1,000 msec). A raw time analysis also 
permits the calculation of velocity and acceleration.

Influences of Hardware
MouseTracker runs on any standard Windows XP/

Vista/7 computer. There do not appear to be any major 
hardware constraints. Across a wide array of computers 
with various hardware specifications, we have found that 
MouseTracker’s sampling rate of the mouse location does 
not fall outside a range of 60 to 75 Hz. MouseTracker 
attempts to sample the mouse location as frequently as 
possible, but because the sampling rate is constrained by 
the processor’s clock speed (and other factors related to 
the processor’s architecture), there is some variability in 
how frequently the mouse may be sampled on different 
computers (60–75 Hz).

We assume that most researchers will conduct Mouse-
Tracker experiments with a standard computer mouse, 
but any pointing device that is supported in Windows is 
compatible with MouseTracker (e.g., touchpad, trackball, 
joystick, pointing stick, graphics tablet, touchscreen, Nin-
tendo Wii remote). However, different types of pointing 
devices provide different types of motoric experiences that 
could influence the nature and quality of MouseTracker 
data. For instance, touchpads (supplied with almost every 
modern laptop computer) make use of the dragging mo-
tions of the finger to control the location of the mouse cur-
sor. Performance is usually impaired in computer point-
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then be loaded into the Analyzer software for visualization 
and analysis, which will be described next.

Analyzing Mouse Trajectory Data
To begin mouse trajectory visualization and data 

analysis, the user launches the Analyzer program (Start 
Menu  Programs  MouseTracker  Analyzer). This 
loads a user-interactive, graphics-based environment. An 
example screenshot appears in Figure 4. Analyzer allows 
the user to define two meaningful conditions for a particu-
lar analysis (Condition 1 and Condition 2), each of which 
can include many individual condition codes (as are speci-
fied in the experiment .CSV file). Trajectory data from 
all trials corresponding to these codes are then able to be 
imported into the program for visualization and analysis.

Loading data. To load data, the user clicks the “Load 
File” button to load one .MT file, or the “Load Folder” 
button to load multiple .MT files. Once loaded, the file(s) 
appear in the list on the left portion of the screen. The user 
is then prompted “Load .LOG files (if any)?” .LOG files 
are optional files tied to .MT files that contain informa-
tion about which trajectories in a participant’s data should 
be excluded from analysis. These .LOG files are gener-
ated using the “Exclude” and “Save” buttons (detailed 
later). Clicking “Yes” excludes trajectories that have been 
previously excluded and saved; clicking “No” disregards 
.LOG files (and thus, previous exclusions that were saved 
are not loaded).

as are needed. There are four types of trials that Mouse-
Tracker allows: nonexperimental trials (e.g., instructions 
or break) in which a fullscreen image is displayed, trials 
involving an image stimulus, trials involving a letter string 
stimulus (e.g., a word), trials involving an auditory stimu-
lus, and compound trials involving multiple stimuli pre-
sented in a sequence and/or simultaneously. (Compound 
trials can involve an unlimited number of images, letter 
strings, sounds, or a mix of these.) For each trial, inputted 
in a single row, the following is specified: the stimulus 
or sequence of stimuli, the various response alternatives 
(these can be either a letter string or an image), which 
response alternative is correct, which response alterna-
tive is the default comparison (e.g., hypothesized to attract 
participants’ mouse movements), and a specific condition 
code. The condition code defines some meaningful code 
that can be used to select this trial in the Analyzer pro-
gram. This can be general (e.g., “typical” or “atypical”) or 
very specific unique codes (e.g., “200” or “red_circle_5”) 
that can then be grouped into a meaningful condition in 
the Analyzer program. 

Running Experiments
To run experiments, the user opens Runner (Start 

Menu   Programs   MouseTracker   Runner). It 
prompts the user to select an experiment .CSV file. Run-
ner then executes this file and, once finished, outputs a 
data file carrying the extension .MT. This .MT file may 

Figure 4. An example screenshot of the Analyzer program’s main screen.
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of condition codes, but to separate out whether responses 
were correct versus incorrect. This is most helpful in ex-
periments in which there are no true incorrect responses 
and participants are given no feedback on errors. Because 
correct and incorrect alternatives are always specified in 
the experiment .CSV file, a user could use this feature to 
separate out trials on the basis of whether the participant 
responded in a way that the researcher expected (i.e., cor-
rect) versus did not expect (i.e., incorrect). For instance, 
imagine an experiment in which participants are asked 
to decide whether they “like” or “do not like” different 
foods. There are no correct or incorrect responses. How-
ever, when a chocolate cake is presented, we can expect 
that participants should respond “like,” and we may be 
interested to examine trials in which they respond unex-
pectedly (“do not like”). When participants are deciding 
whether they like or do not like chocolate cake, and they 
ultimately decide “do not like,” a user might be interested 
to know whether trajectories nevertheless show an attrac-
tion to the “like” alternative before settling into “do not 
like.” A correct/incorrect analysis would allow a direct 
comparison between the “like” trials (Condition 1) and 
“do not like” trials (Condition 2). Thus, rather than ex-
amine two separate conditions, a correct/incorrect analy-
sis allows a user to examine the same condition but to 
separate out correct/expected responses versus incorrect/
unexpected ones.

Visualizing, exploring, and manual exclusions. The 
user can choose to visualize trajectories with individual 
coordinates that are marked or not marked (appears as 
dots on the trajectories, as in Figure 4). After clicking the 
“Visualize” button, all trajectories corresponding with 

Importing trajectories. To import mouse trajectories 
from loaded data files, the user clicks the “Import” button. 
MouseTracker then searches through all the loaded .MT 
files for all condition codes that were used (as are specified 
in the experiment’s .CSV file). A new screen appears, and 
all of the condition codes are displayed under the All used 
codes list (see Figure 5). In this screen, the user defines 
which condition codes are included in Condition 1 and 
Condition 2 for MouseTracker to analyze. Conditions 1 
and 2 can also be renamed. Several additional options are 
available: exclude response errors; exclude trials whose 
RTs are not within a specified range; exclude trials whose 
initiation times are not within a specified range; whether 
the user would like to run a normalized time analysis or 
raw time analysis; whether to perform a between-subjects 
analysis; and whether to perform a correct/incorrect analy-
sis (detailed below). In the Responses and remapping tab, 
the user can remap trajectories directed at one response 
alternative to another response alternative (e.g., for over-
laying trajectories to permit direct comparisons), and can 
include/exclude trials involving specific responses. These 
options and specified condition codes can also be saved 
and loaded using .MTS files for convenience. When he 
or she is ready to import trajectories, the user clicks the 
“Go” button.

If the user chooses to perform a correct/incorrect analy-
sis, condition codes are defined for only one condition. 
This is because trials involving a correct response are im-
ported into Condition 1, and trials involving an incorrect 
response are imported into Condition 2. Thus, rather than 
examine two separate sets of condition codes, a correct/
incorrect analysis allows a user to examine one single set 

Figure 5. An example screenshot of the Analyzer program’s import screen.
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jectory pane. If more than two response alternatives have 
been used, these mean MD and AUC values reflect trajec-
tories’ attraction toward the default-comparison response 
alternative (as specified in the trial’s row in the experiment 
.CSV file). The user is then given the option of system-
atically screening for extreme trajectories on the basis 
of the MD or AUC measure. If choosing to conduct this 
systematic screening, the user is asked how many stan-
dard deviations away from the mean should be cut off and 
whether to use the MD or AUC measure. Trajectories ex-
cluded by this screening are recoded into Condition 666 
(rather than into Condition 1 or 2). Whether this system-
atic screening is saved to .LOG files (like manual exclu-
sions) is an option that is set by the user (see the Analyzer 
Program Settings section). The “Compute” button also 
generates two z-normalized values of the MD and AUC 
of all trajectories in Conditions 1 and 2, which are use-
ful for distributional analyses (described earlier). One  
z-normalized value comes from pooling across both Con-
ditions 1 and 2 (“together”), and another z-normalized 
value comes from pooling separately within Condition 1 
and within Condition 2 (“separate”). These z-normalized 
MD and AUC values and the x-flips values appear in the 
final exported .CSV data sheet. If the user opted to conduct 

Condition 1 are displayed in the left pane, appearing here 
as purple. All trajectories corresponding with Condition 2 
are displayed in the right pane, appearing here as blue tra-
jectories. Trajectory colors can be customized by the user 
(see the Analyzer Program Settings section). The sample 
data shown here (Figure 4) come from an experiment si-
miliar to that shown in Figure 1, where the “Start” button 
is at the bottom center and the response alternatives are 
at the top left and top right corners of the screen. Impor-
tantly, these trajectories have all been space rescaled, time 
normalized, and remapped to the response in the top right 
corner. Mean trajectories aggregated across all trials (and 
across all participants, if multiple participants are included 
in the analysis) are displayed in the bottom left pane. The 
time courses of the mean x-position and mean y-position 
(at each of the normalized or raw time steps) appear in the 
bottom middle of the screen (see Figure 4). 

Every trajectory displayed in the Condition 1 and Con-
dition 2 panes is able to be either individually selected for 
more detailed information or excluded from analysis. To 
select one or multiple trajectories, the user hovers over 
the Condition 1 or Condition 2 pane. The mouse cursor 
turns into a crosshair. The user then holds down the mouse 
and drags downward and rightward to draw a rectangular 
selection window, here appearing in black (see Figure 4). 
Once the mouse is released, any trajectories captured 
within this selection window are listed in the “Selected 
tracks” list in the bottom right of the screen. To select 
the trajectory, the user clicks on the trajectory item in the 
list, and that trajectory is redrawn using a different color 
(shown here in black). The color of the rectangular selec-
tion window and selected trajectories can be customized 
by the user (see the Analyzer Program Settings section). 
To obtain detailed information about a selected trajectory, 
the user double-clicks on the trajectory item in the list, and 
a new window will appear with details (see Figure 6 for a 
screenshot). Various details are provided here: subject ID, 
trial number, condition, RT, initiation time, stimulus file, 
left response alternative, right response alternative, actual 
response, two measures of spatial attraction toward all un-
selected alternatives (MD and AUC), complexity (x-flips 
and y-flips), and a time course of the trajectory’s x- and 
y-coordinates as a function of normalized or raw time.

To manually exclude the selected trajectory item(s) 
from analysis, the user clicks the “Exclude” button. Doing 
this will recode the trajectory item(s) into Condition 888 
(rather than into Condition 1 or 2). To save these exclusion 
changes, the user clicks the “Save” button. This will create 
a corresponding .LOG file in the same folder as the .MT 
file, which stores information about which trajectories 
have been converted into the Exclusion Condition 888. 
When loading the .MT file(s) later, MouseTracker asks 
whether the user wants to load .LOG files as well (and 
thus whether to load previous exclusions or not).

Computing and systematic screening. To compute 
by-trial measures of spatial attraction/curvature and com-
plexity (MD, AUC, x-flips, and y-flips, detailed earlier), 
the user clicks the “Compute” button. Once these have 
finished computing, the mean MD and AUC values for 
Condition 1 and Condition 2 appear under the mean tra-

Figure 6. An example screenshot of the Analyzer program’s 
selected trajectory screen.
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the first experiment, we computer-simulated cursor move-
ments to show that the recorded trajectories from Mouse-
Tracker are highly similar to the computer-simulated tra-
jectories that are known a priori. In the second experiment, 
we compared MouseTracker data from a simple categori-
zation task that was repeated twice within each partici-
pant in order to determine test–retest reliability. Moreover, 
in order to demonstrate that MouseTracker is capable of 
recording accurate RTs, we compared RT measurements 
from MouseTracker with measurements from an estab-
lished software that is known to record RTs accurately.

Experiment 1

To verify that MouseTracker captures mouse trajecto-
ries accurately, we conducted two simulations, each con-
sisting of 24 trials, in which the response trajectory was 
generated by the computer and was thus known a priori. 
This allowed us to examine how well MouseTracker can 
record a known trajectory. To computer-generate trajecto-
ries, we developed a separate executable file (completely 
independent of the MouseTracker software) that could di-
rectly set the x-, y-coordinates of the mouse and move it 
along a known path at a known speed. This executable file 
was programmed to run in the background (without any 
graphical window displayed on screen) and to manipulate 
the location of the mouse cursor by making direct calls 
to the Windows application programming interface. This 
allowed the executable file to simulate movements of the 
mouse cursor just as a human user would do by physically 
moving a mouse.

Method
A simple MouseTracker experiment was designed. On the 24 

trials in each simulation, Runner presented an image stimulus and 
waited for a mouse click at either the top left or top right corner 
while mouse movements were recorded. At the start of each trial, a 
“Start” button appeared in the bottom center portion of the screen. 
After the “Start” button was clicked, the mouse was automatically 
centered at the bottom center portion of the screen [0.00, 0.00], and 
the independent executable file, which was described previously, 
was immediately launched by pressing a designated keyboard short-
cut (while the MouseTracker trial was still live).

In the first simulation (Simulation 1), the executable file (running 
in the background) directed the mouse position along a straight-
line trajectory from the bottom center portion of the screen [0.00, 
0.00] to a point located in the response button in the top right corner 
of the screen [0.98, 1.43] by recurrently changing the mouse’s x-,  
y-coordinates. It moved the mouse along the straight-line trajec-
tory in 60 equal increments occurring every 30 msec. After the 60th 
step (when the mouse was at its final destination in the top right 
corner), the executable file simulated a left-button mouse click, 
effectively completing the MouseTracker trial, and the executable 
file then terminated itself. This procedure was repeated for all 24 
trials. In the second simulation (Simulation 2), the executable file 
directed the mouse position along a straight-line trajectory from the 
bottom center portion of the screen [0.00, 0.00] to the top center 
[0.00, 1.50], followed by an abrupt change in direction, redirecting 
the mouse along another straight-line trajectory from the top center 
[0.00, 1.50] to the top right [1.00, 1.50]. As in Simulation 1, it moved 
the mouse along this entire path in 60 equal increments occurring 
every 30 msec. After the 60th step, the executable file simulated a 
left-button mouse click and terminated itself.

a raw time analysis, then MD, AUC, x-flips, and y-flips are 
not computed. Rather, velocity and acceleration profiles 
are generated, and these are displayed in a new window 
after clicking the “Compute” button. This information ap-
pears in the output .CSV file.

Exporting Finalized Data
To export finalized data for hypothesis testing and 

further analysis in Excel, the user clicks the “Export to 
.CSV” button, which exports all of the data to a .CSV file 
readable in Excel. The user is prompted for a path and file 
name. MouseTracker then automatically loads this file in 
the default application associated with .CSV files (prob-
ably Excel) for the user to inspect it immediately.

There are two portions of an output .CSV file. The first 
is a list of every single trial across all participants and 
across all conditions. It lists all important information, 
including all of the measures that are viewable using the 
Analyzer program, in addition to the x- and y-coordinates 
corresponding with each trial, condition information, RTs, 
initiation times, MD, AUC, x-flips, and y-flips, among 
other information. Below the section of individual trials 
is a section detailing mean trajectories for Condition 1 
and Condition 2 in each individual participant (all x-, 
y-coordinates), in addition to their mean values for MD, 
AUC, x-flips, y-flips, RT, and initiation time. If a raw time 
analysis was conducted, the x- and y-coordinates corre-
sponding with the raw time steps (rather than with the nor-
malized time steps) are provided. Moreover, velocity and 
acceleration information is detailed for each individual 
trajectory and for each participant’s mean trajectories, and 
MD, AUC, x-flips, and y-flips are not included (because 
these are not available in a raw time analysis).

This outputted data sheet is MouseTracker’s final prod-
uct. Hypothesis testing can then be performed on mean 
trajectory data and various analyses can be conducted. See 
the analyses conducted in prior mouse-tracking studies 
for more information (Dale et al., 2007; Dale et al., 2008; 
Farmer et al., 2007; Freeman & Ambady, 2009; Freeman 
et al., 2008; Freeman et al., 2010; McKinstry et al., 2008; 
Spivey et al., 2005; Wojnowicz et al., 2009).

Analyzer Program Settings
Several features of the Analyzer program can be cus-

tomized by clicking on the “Settings” button (see Fig-
ure 4). After this button is clicked, a new window appears 
that allows the user to set a number of options: the color 
of Condition 1 trajectories, the color of Condition 2 tra-
jectories, the color of selected trajectories (and the rectan-
gular selection window), the background color of trajec-
tory panes, whether to save exclusions of systematically 
screened trajectories (made using the “Compute” button) 
to .LOG files, and whether to automatically check the 
Internet for software updates when the Analyzer program 
is started.

Accuracy and Reliability of MouseTracker Data
In two experiments, we determined the accuracy and 

reliability of MouseTracker’s trajectory and RT data. In 
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Simulation 1. To more rigorously assess the accuracy 
of the simulated trajectories, the .MT data file was manu-
ally opened in Excel for extracting raw x-, y-coordinates 
(without time normalization). Because on every trial the 
mouse began moving at slightly different time steps (due to 
random variability in the time elapsed between clicking the 
“Start” button and launching the independent executable 
file), we truncated by deleting any extraneous time steps 
with x-, y-coordinates of [0.00, 0.00] that took place before 
the mouse started moving. However, we always retained 
one time step with x-, y-coordinates of [0.00, 0.00] at the 
beginning of the trial to denote the start of the trajectory. 
Out of the 24 trajectories, 22 of them reached the final 
destination [0.98, 1.43] in 118 raw time steps, and 2 trajec-
tories reached the final destination in 119 raw time steps. 
To make all 24 trajectories have equal length, we converted 
the 22 trajectories with 118 time steps into having 119 time 
steps by simply extending the last x-, y-coordinate pair into 
a 119th time step. By using the raw time stamp information 
of each of the 119 time steps and the knowledge that the 
mouse moved one sixtieth of the way between [0.00, 0.00] 

Results and Discussion
For both Simulations 1 and 2 (in separate sessions), the 

outputted .MT data file from Runner was loaded into the 
Analyzer program (using the “Load File” button). Because 
Analyzer requires two conditions, we arbitrarily imported 
the first half of the 24 trials into Condition 1 and the second 
half of the 24 trials into Condition 2 (using the “Import” 
button). We then visualized the trajectories, computed MD 
and AUC values, and exported data to an output .CSV file 
(using the “Visualize,” “Compute,” and “Export to .CSV” 
buttons, respectively). Figure 7 depicts the Analyzer screen-
shots of the Condition 1 pane and the Condition 2 pane for 
both Simulations 1 and 2. Note that each Condition 1 pane 
and Condition 2 pane includes 12 individual trajectories, 
but because they completely overlap with one another, each 
set of 12 trajectories appears as only one single trajectory. 
Thus, from a casual inspection of the visualized data in An-
alyzer, MouseTracker appears to have effectively recorded 
the simulated trajectories of Simulations 1 and 2 in a nearly 
identical fashion across each set of 24 trials (and these were 
accurately recovered by the Analyzer program).

Figure 7. Computer-simulated trajectories loaded into the Analyzer program (Experiment 1). In 
Simulation 1, a straight-line trajectory from the bottom center to the top right portion of the screen 
was simulated. In Simulation 2, a 90º trajectory was simulated involving a movement straight from 
the bottom center to the top center portion of the screen, and then a sharp redirection to the top 
right portion. Each of the four panes actually contains 12 individual trajectories, but because each 
set of 12 trajectories was recorded nearly identically, each set appears as only one trajectory because 
they overlap.
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1.50] every 30 msec, we calculated a separate series of 
123 raw time steps that corresponded with the true known 
trajectory that was simulated.

Four time bins were created based on raw time steps 
(1–30, 31–60, 61–90, 91–123), and the Ms and SDs of the 
observed trajectories’ x-, y-coordinates were calculated. 
Table 3 contains these coordinates in addition to the cor-
responding time-binned x- and y-coordinates of the true 
known trajectory. Note that the observed x-, y-values were 
highly similar to the known x-, y-values. We also com-
puted the Pearson correlation between the mean observed 
coordinates and the true known coordinates across all 
time steps, separately for x- and y-coordinates [rx(121) 5 
.999896, p , .0001, and ry(121) 5 .999921, p , .0001]. 
The superficial accuracy of the observed trajectories 
(Figure 7), the high similarity between the time-binned 
observed x-, y-coordinates and those of the true known 
trajectory (Table 3), and the near one-to-one correlation 
between observed and known coordinates across time 
demonstrate that MouseTracker accurately recorded these 
90º simulated trajectories.

The Ms and SDs of the observed trajectories’ MD and 
AUC values (calculated from the output .CSV file) ap-
pear in Table 2. The true MD and AUC values of these 
trajectories were determined as follows. Recall that MD is 
the maximum perpendicular deviation from an idealized 
straight-line trajectory between an observed trajectory’s 
start and endpoints. Also recall that AUC is the geometric 
area between the observed trajectory and this idealized 
straight-line trajectory (see Figure 2). For these simulated 
trajectories, MD would be 0.8321 because the maximum 
perpendicular deviation, in this case, is the altitiude drawn 
from the vertex of the right angle (formed by the observed 
trajectory) to the hypotenuse (the idealized straight-line 
trajectory), which is calculated as 0.8321 using basic trig-
onometry. As for AUC, the area between the simulated 
90º trajectory and an idealized straight-line trajectory 
is simply a triangle with a base of 1.000 and a height of 
1.500, resulting in a triangular area of 0.7500. This is the 
true known AUC. As is seen in Table 2, the observed MD 

to [0.98, 1.43] every 30 msec, we calculated a separate se-
ries of 119 raw time steps that corresponded with the true 
known trajectory that was simulated.

To compare the observed trajectories with the true 
known trajectory, we created four time bins based on raw 
time steps (1–30, 31–60, 61–90, 91–119) and calculated 
Ms and SDs of the observed trajectories’ x-, y-coordinates. 
These coordinates appear in Table 1 along with the cor-
responding time-binned x- and y-coordinates of the true 
known trajectory. Note that the observed x-, y-values 
are highly similar to the known x-, y-values. As an ad-
ditional analysis, we computed the Pearson correlation 
between the mean observed coordinates and the true 
known coordinates across all time steps, separately for 
x- and y-coordinates [rx(117) 5 .999950, p , .0001, and 
ry(117) 5 .999950, p , .0001]. Given the superficial ac-
curacy of the observed trajectories (exemplified by vi-
sualized data depicted in Figure 7), the closeness of the 
time-binned observed x-, y-coordinates to those of the true 
known trajectory (Table 1), and near one-to-one corre-
lation between observed and known coordinates across 
time, we conclude that MouseTracker quite accurately re-
corded these simulated trajectories.

Using the output .CSV file exported from the Analyzer 
program, we calculated the M and SD of the observed tra-
jectories’ MD and AUC values. Because the simulated tra-
jectory was a straight line, we know that the true MD and 
AUC values are 0 (since there is zero curvature). The ob-
served and known MD and AUC values for Simulation 1 
appear in Table 2. The observed values were highly similar 
to the known values of 0. Thus, MouseTracker accurately 
captured the MD and AUC of the simulated trajectories.

Simulation 2. Recall that the simulated trajectories in 
Simulation 2 took the form of an initial straight line from 
the bottom center portion of the screen to the top center, 
and then a sharp 90º turn with a second straight line from 
the top center portion to the top right (see Figure 7). As 
in Simulation 1, we extracted raw x-, y-coordinates from 
the .MT data file, and we deleted extraneous time steps 
of [0.00, 0.00] that preceded mouse movement. Out of 
the 24 trajectories, 21 of them reached the final destina-
tion [1.00, 1.50] in 123 raw time steps, and 3 trajectories 
reached the final destination in 122 raw time steps. To 
make all 24 trajectories have equal length, we converted 
the 21 trajectories with 122 time steps into having 123 
time steps by extending the last x-, y-coordinate pair into 
a 123rd time step. By using the raw time stamp informa-
tion of each of the 123 time steps and the knowledge that 
the mouse initially moved one thirtieth of the way between 
[0.00, 0.00] to [0.00, 1.50] every 30 msec, and then moved 
one thirtieth of the way between [0.00, 1.50] and [1.00, 

Table 1 
Known and Observed Time-Binned x- and y-Coordinates in Simulation 1

Bin 1 (1–30) Bin 2 (31–60) Bin 3 (61–90) Bin 4 (91–119)

  x  y  x  y  x  y  x  y

M 0.1246 0.1811 0.3748 0.5446 0.6254 0.9086 0.8708 1.2653
SD 0.0033 0.0048 0.0033 0.0048 0.0035 0.0051 0.0032 0.0047
Known  0.1249  0.1816  0.3748  0.5449  0.6247  0.9081  0.8702  1.2651

Table 2 
Known and Observed MD and AUC Values  

in Simulations 1 and 2

Simulation 1 Simulation 2

   MD  AUC  MD  AUC  

M 0.0011 20.0003 0.8320 0.7565
SD 0.0001 0.0001 0.0009 0.0074

 Known 0.0000  0.0000 0.8321  0.7500  

Note—MD, maximum deviation; AUC, area under the curve.
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On each trial, participants were presented with an image of a cir-
cle and were asked to identify whether it was red or blue by clicking 
a response button that was located in the top left or top right corner 
(marked red and blue). We counterbalanced across participants 
whether red appeared on the left and blue on the right, or vice versa 
(but this remained constant throughout all three task versions). Each 
task contained 20 trials (10 red and 10 blue) that were presented in 
a pseudorandomized order and were preceded by several practice 
trials. At the start of each trial, participants clicked a “Start” button 
at the bottom center portion of the screen. After clicking this button, 
an image of a circle appeared in its place, and participants clicked on 
a response button in either the top left or top right corner to indicate 
red versus blue.

Results and Discussion
There were no trials in which participants identified the 

color incorrectly. Trials with extreme MD values (4 SDs 
above or below the mean) were discarded (1.7%).

Accuracy of MouseTracker RT data. RTs in the 
MouseTracker task did not significantly differ from those 
in the DirectRT task [t(11) 5 1.19, p 5 26], although there 
was a trend of RTs in MouseTracker (M 5 1,098 msec, 
SD 5 203 msec) being longer than RTs in DirectRT (M 5 
1,052 msec, SD 5 186 msec). This lack of significance is 
likely due to low statistical power, given a small number of 
participants. With RT SDs as the dependent measure, there 
was no evidence of MouseTracker adding any variability 
to RT measurements (M 5 167 msec, SD 5 61 msec) rela-
tive to those in DirectRT (M 5 160 msec, SD 5 59 msec) 
[t(11) 5 0.36, p 5 .72]. To inspect for possible quantiza-
tion effects or differences in distributional shape, we plot-
ted the cumulative frequency distribution (CFD) of the 
MouseTracker RTs and compared it with the CFD of the 
DirectRT RTs (Figure 8). Any quantizing would be evi-
denced as step-like patterns in the CFD for MouseTracker 
RTs, which were not seen (see Figure 8). Moreover, the 
Kolmogorov–Smirnov test indicated that the shapes of the 
DirectRT and MouseTracker RT distributions, once made 
equal mean and variance (via z-normalization), did not 
significantly differ from one another (D 5 .05, p 5 .94). 
Thus, although MouseTracker RTs were slightly longer 
than those in DirectRT, MouseTracker did not introduce 
any more variability to RT measurements, and did not 
constrain RTs to a limited set of values (quantizing), or 
affect its distributional shape.

We conclude that MouseTracker measures RTs rela-
tively accurately. It did not add random error (SDs) to RTs, 
nor did it affect their distributional shape or elicit quan-
tizing. However, MouseTracker appeared to introduce a 
small amount of systematic error (Ms) to RTs, shifting the 
distribution by approximately 40–50 msec. This may have 
been due to small differences in the way MouseTracker 

and AUC values were highly similar to these known val-
ues. Thus, MouseTracker accurately captured the MD and 
AUC of these simulated 90º trajectories.

Taken together, the results of Simulations 1 and 2 show 
that MouseTracker accurately records mouse trajectories 
and accurately estimates MD and AUC. Next, we will ex-
amine the accuracy of MouseTracker’s RT measurements 
and the reliability of its data overall.

Experiment 2

There were two goals of Experiment 2. The first was to 
verify the accuracy of MouseTracker’s RT measurements. 
We accomplished this by conducting a study in which 
participants completed a simple categorization task using 
MouseTracker, and another time using software that is 
known to accurately record RTs: DirectRT (Empirisoft). 
The appearance and timing of the DirectRT task was made 
to be virtually identical to those of the MouseTracker task. 
If MouseTracker accurately records RTs, the Ms and SDs 
of MouseTracker RTs should be similar to the Ms and SDs 
of the RTs recorded by DirectRT. Moreover, the shape of 
the MouseTracker RT distribution should be similar to 
the shape of the DirectRT RT distribution. Distributional 
analysis is important because MouseTracker’s sampling of 
mouse coordinates (60–75 Hz) could potentially interfere 
with the recording of RTs by forcing them into quantized 
intervals (rather than permitting an accurate continuum). 
If this was the case, this would be revealed in a compari-
son between the cumulative frequency distributions of 
MouseTracker RTs and DirectRT RTs.

The second goal of Experiment 2 was to determine the 
reliability of MouseTracker measurements. To accom-
plish this, we had participants complete an identical ver-
sion of the MouseTracker task a second time. This allowed 
us to assess the test–retest reliability of MouseTracker’s 
measurements.

Method
Participants. Twelve volunteers participated in exchange  

for $5.
Procedure. Participants completed three identical categorization 

tasks, once run in DirectRT and twice run in MouseTracker. The 
task was run twice in MouseTracker in order to examine the test–
retest reliability of MouseTracker data. We counterbalanced across 
participants whether they completed the task first in MouseTracker 
and second in DirectRT (rather than first in DirectRT and second in 
MouseTracker). The second version of the MouseTracker task (re-
test) was always completed third. In between each of the three tasks 
was a filler task. All of the tasks were run on the same computer, 
and the MouseTracker and DirectRT tasks were virtually identical 
in appearance and timing.

Table 3 
Known and Observed Time-Binned x- and y-Coordinates in Simulation 2

Bin 1 (1–30) Bin 2 (31–60) Bin 3 (61–90) Bin 4 (91–123)

  x  y  x  y  x  y  x  y

M 0.0000 0.3794 0.0000 1.1279 0.2209 1.4981 0.7446 1.4981
SD 0.0001 0.0105 0.0001 0.0110 0.0078 0.0001 0.0077 0.0001
Known  0.0000  0.3745  0.0000  1.1236  0.2174  1.4981  0.7403  1.4981
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stream of rich cognitive output. We hope that researchers 
will adapt current tasks that use RT measures for use with 
MouseTracker, so that continuous streams of output can 
be tracked and the fine-grained temporal dynamics lead-
ing up to participant responses can be unveiled. Moreover, 
new tasks can be designed for endeavoring new interroga-
tions into the temporal details of mental phenomena that 
researchers have not been able to fully inspect.

MouseTracker was designed to allow any psychologist 
or cognitive scientist from any niche to easily harness the 
power of a mouse-tracking methodology. MouseTracker is 
free but affords the rich temporal resolution of expensive 
ERP and eyetracking measures. Our hope is that this soft-
ware will equip researchers with a practical, inexpensive, 
and time-sensitive methodology—needing nothing more 
than a laboratory computer and a mouse—to begin digging 
more deeply into the real-time dynamics of mental activity.

Author Note

We thank Evan Silverstein for creative insights. While developing the 
software, J.B.F. was supported by a Tufts University graduate fellowship. 

displays stimuli on the screen, causing a slight delay in 
participant responses. We recommend that users consider 
MouseTracker’s RTs to be an accurate measure, but that 
they bear in mind that the RTs may be slightly (but sys-
tematically) longer than RTs more accurately recorded by 
software such as DirectRT. Because this error is system-
atic, it does not pose any problems if all RT measurements 
within an experiment are performed by MouseTracker. 
Directly comparing RTs from MouseTracker with those 
from software such as DirectRT, however, may be more 
difficult.

Reliability of MouseTracker data. Serving as es-
timates of test–retest reliability, Pearson correlations 
between the first and second MouseTracker tasks were 
computed for the following measures: MD, AUC, RT, ini-
tiation time, and x-flips (Table 4). Across the measures, 
test–retest reliability was quite good [rs(10) 5 .78–.95] 
(all ps , .01). We conclude that MouseTracker’s measure-
ments are reliable, showing consistency over time.

Conclusion

Online methods for assessing the temporal dynamics of 
mental processing have been scarce. The RT has been the 
gold standard in many research domains. In the present ar-
ticle, we presented the software package, MouseTracker, 
and described how its recording and analysis of computer 
mouse movements can reveal the real-time evolution of 
psychological responses. Using MouseTracker allows 
a single RT to be opened up into a continuous ongoing 

Table 4 
Test–Retest Reliability of MouseTracker Data

 Mouse Trajectory Parameter  r  

Maximum deviation .78
Area under the curve .81
Reaction time .95
Initiation time .90

 Complexity (x-flips)  .79  

C
u

m
u

la
ti

ve
 F

re
q

u
en

cy

.5

.6

.7

.8

.9

0

.1

.2

.3

.4

1.0

0
100

200
300

400
500

600
700

800
900

1,000
1,100

1,200
1,300

1,400
1,500

1,600
1,700

1,800
1,900

2,000
2,100

2,200
2,300

2,400
2,500

RT (msec)

MouseTracker

DirectRT

Figure 8. Cumulative frequency of MouseTracker and DirectRT trials is plotted as a function of reaction time (RT).



MouseTracker Software for Studying Real-Time Mental Processing        241

Magnuson, J. S. (2005). Moving hand reveals dynamics of thought. 
Proceedings of the National Academy of Sciences, 102, 9995-9996.

McKinstry, C., Dale, R., & Spivey, M. J. (2008). Action dynamics 
reveal parallel competition in decision making. Psychological Sci-
ence, 19, 22-24.

Newell, A. (1980). Physical symbol systems. Cognitive Science, 4, 
135-183.

Pylyshyn, Z. W. (1984). Computation and cognition. Cambridge, MA: 
MIT Press.

SAS Institute (1989). SAS/STAT user’s guide. Cary, NC: Author.
Schmidt, T. (2002). The finger in flight: Real-time motor control by 

visually masked color stimuli. Psychological Science, 13, 112-117.
Song, J. H., & Nakayama, K. (2006). Role of focal attention on laten-

cies and trajectories of visually guided manual pointing. Journal of 
Vision, 6, 982-995.

Song, J. H., & Nakayama, K. (2008). Target selection in visual search 
as revealed by movement trajectories. Vision Research, 48, 853-861.

Spivey, M. J. (2007). The continuity of mind. New York: Oxford Uni-
versity Press.

Spivey, M. J., & Dale, R. (2004). The continuity of mind: Toward a 
dynamical account of cognition. In B. H. Ross (Ed.), The psychology 
of learning and motivation: Vol. 45. Advances in research and theory 
(pp. 87-142). San Diego: Elsevier.

Spivey, M. J., & Dale, R. (2006). Continuous dynamics in real-time 
cognition. Current Directions in Psychological Science, 15, 207-211.

Spivey, M. J., Grosjean, M., & Knoblich, G. (2005). Continuous at-
traction toward phonological competitors. Proceedings of the National 
Academy of Sciences, 102, 10393-10398.

Spivey, M. J., Richardson, D. C., & Dale, R. (2008). The movement of 
eye and hand as a window into language and cognition. In E. Morsella, 
J. A. Bargh, & P. M. Gollwitzer (Eds.), Oxford handbook of human ac-
tion (pp. 225-249). New York: Oxford University Press.

Tipper, S. P., Howard, L. A., & Houghton, G. (1998). Action-based 
mechanisms of attention. Philosophical Transactions of the Royal So-
ciety B, 353, 1385-1393.

Wojnowicz, M. T., Ferguson, M. J., Dale, R., & Spivey, M. J. (2009). 
The self-organization of explicit attitudes. Psychological Science, 20, 
1428-1435.

(Manuscript received June 1, 2009; 
revision accepted for publication September 13, 2009.)

The research reported in the present article was supported by Research 
Grant NSF BCS-0435547 given to N.A. Correspondence concerning this 
article should be addressed to J. B. Freeman, Department of Psychology, 
Tufts University, 490 Boston Avenue, Medford, MA 02155 (e-mail: jon 
.freeman@tufts.edu).

References

Abrams, R., & Balota, D. (1991). Mental chronometry: Beyond reac-
tion time. Psychological Science, 2, 153-157.

Akamatsu, M., & MacKenzie, I. S. (2002). Changes in applied force to 
a touchpad during pointing tasks. International Journal of Industrial 
Ergonomics, 29, 171-182.

Dale, R., Kehoe, C., & Spivey, M. J. (2007). Graded motor responses 
in the time course of categorizing atypical exemplars. Memory & Cog-
nition, 35, 15-28.

Dale, R., Roche, J., Snyder, K., & McCall, R. (2008). Exploring 
action dynamics as an index of paired-associate learning. PLoS ONE, 
3, e1728.

Dietrich, E., & Markman, A. B. (2003). Discrete thoughts: Why cogni-
tion must use discrete representations. Mind & Language, 18, 95-119.

Farmer, T. A., Anderson, S. E., & Spivey, M. J. (2007). Gradiency 
and visual context in syntactic garden-paths. Journal of Memory & 
Language, 57, 570-595.

Finkbeiner, M., Song, J. H., Nakayama, K., & Caramazza, A. 
(2008). Engaging the motor system with masked orthographic primes: 
A kinematic analysis. Visual Cognition, 16, 11-22.

Freeman, J. B., & Ambady, N. (2009). Motions of the hand expose the 
partial and parallel activation of stereotypes. Psychological Science, 
20, 1183-1188.

Freeman, J. B., Ambady, N., Rule, N. O., & Johnson, K. L. (2008). 
Will a category cue attract you? Motor output reveals dynamic com-
petition across person construal. Journal of Experimental Psychology: 
General, 137, 673-690.

Freeman, J. B., Pauker, K., Apfelbaum, E. P., & Ambady, N. (2010). 
Continuous dynamics in the real-time perception of race. Journal of 
Experimental Social Psychology, 46, 179-185.

Gold, J. I., & Shadlen, M. N. (2001). Neural computations that un-
derlie decisions about sensory stimuli. Trends in Cognitive Sciences, 
5, 10-16.

Goodale, M. A., Pelisson, D., & Prablanc, C. (1986). Large adjust-
ments in visually guided reaching do not depend on vision of the hand 
or perception of target displacement. Nature, 320, 748-750.


