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Much of psychological science is concerned with 
understanding the underlying processes that drive par-
ticular behavioral responses. When such responses 
occur in only a few hundred milliseconds, as they often 
do, gaining insight into the cognitive processes that 
culminate in a given response has proven difficult. The 
most common solution to this problem is still in use 
today, a century and a half after Donders (1868/1969) 
first measured the human reaction time (RT) to infer a 
dissociation between hypothetically distinct processes. 
Since then, the study of mental chronometry has 
unquestionably advanced, and using RTs or RT distribu-
tions to make inferences about the time course of cog-
nitive processes is a gold standard in the field. Measuring 
neural activity with high temporal resolution (e.g., elec-
troencephalography) or patterns of visual attention (eye 
tracking) has also led to unprecedented insights into 
the temporal evolution of behavioral responses. How-
ever, although such techniques shed light onto the cog-
nitive and neural processes accompanying a given 
response, more direct measures of the real-time evolu-
tion of the response itself—and of potential activation 
of alternative responses—have been lacking.

Over the past decade, the measurement of hand 
trajectories en route to choices on a screen has opened 
up new avenues of investigation into the dynamics of 
a wide range of cognitive processes. Often obtained 

via computer-mouse movements, hand tracking in 
choice tasks—and mouse tracking more specifically—is 
now a popular method across many areas of the field, 
proving to be a temporally fine-grained measure by 
which participants’ tentative commitments to various 
choice alternatives can be tracked continuously over 
hundreds of milliseconds. Moreover, now that software 
specialized for running and analyzing mouse-tracking 
experiments is freely available (Freeman & Ambady, 
2010; Kieslich & Henninger, 2017), researchers need 
only a computer and a mouse to use the methodology, 
making its availability on par with the common RT.

Neurophysiological research in both monkeys and 
humans supports the use of hand movement as a valid 
index of evolving decisions. Specifically, activity in neu-
ronal populations of the premotor cortex is strongly 
linked to hand movement, and these neuronal popula-
tions are stimulated by the decision process in a 
dynamic fashion. For instance, single-cell recordings 
revealed that during tasks in which monkeys must use 
a hand to select one of two response options, 
directionally tuned cells in the premotor cortex initially 
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fire for both response options simultaneously. However, 
as the decision-making process evolves, neuronal activ-
ity for the selected option gradually increases, whereas 
that for the unselected option is inhibited (Cisek & 
Kalaska, 2005). Such findings suggest that ongoing 
updates of a decision process are made immediately 
available to the premotor cortex, which continuously 
guides response-directed hand movement as a decision 
unfolds (Cisek & Kalaska, 2010; also see Freeman, 
Ambady, Midgley, & Holcomb, 2011).

In the most popular of mouse-tracking tasks, partici-
pants begin a trial by clicking a button at the bottom-
center of the screen, after which they are presented 
with a stimulus. They then move the cursor to response 
alternatives in either top corner of the screen. Response 
alternatives may be presented before or along with 
stimulus onset; in some cases the alternatives are the 
stimuli themselves (Fig. 1a). The original and most com-
mon use of this paradigm is to measure the extent to 
which participants’ mouse trajectory exhibits a con-
spicuous attraction toward responses considered tem-
porarily but not explicitly selected. To provide a few 
examples, participants’ mouse trajectories may veer 
toward a “female” response as a result of a male face’s 
feminine features (Freeman, Ambady, Rule, & Johnson, 
2008); toward a “candy” response because of a spoken 
word’s overlapping phoneme (e.g., “candle”; Spivey, 
Grosjean, & Knoblich, 2005); toward an “angry” 
response because of stereotypes linking Black faces to 
hostility (Hehman, Ingbretsen, & Freeman, 2014; Stolier 
& Freeman, 2016); or toward an image of a cupcake 
before selecting a banana because of an inability to 
resist unhealthy food (Stillman, Medvedev, & Ferguson, 
2017).

A Hidden Attraction

The early days of mouse-tracking research focused on 
such parallel-attraction effects to advance various 
dynamic models of language (Dale, Kehoe, & Spivey, 
2007; Farmer, Cargill, Hindy, Dale, & Spivey, 2007; Spivey 
et al., 2005), social cognition (Freeman & Ambady, 2009, 
2011a; Freeman et al., 2008; Freeman, Pauker, Apfelbaum, 
& Ambady, 2010; Wojnowicz, Ferguson, Dale, & Spivey, 
2009), visual attention (Song & Nakayama, 2006, 2008), 
and decision making (McKinstry, Dale, & Spivey, 2008), 
often opposing dual-systems or stage-based models. 
Researchers realized that the continuous nature of hand 
movement, as opposed to discrete RTs or ballistic eye 
movements, was able to provide evidence for continu-
ous cognitive dynamics in a way previously not possi-
ble, in turn helping to rule out alternative models (for 
reviews, see Freeman, Dale, & Farmer, 2011b; Song & 
Nakayama, 2009; Spivey & Dale, 2006).

For instance, in attitudes research, proponents of 
dual-systems models have long argued that people 
automatically activate an implicit attitude (e.g., Black 
people = bad) that may be subsequently corrected by 
an explicit attitude (e.g., Black people = good) if the 
attitudes conflict (Devine, 1989). In contrast, dynamic 
models propose that both attitudes are simultaneously 
activated and self-organize into a coherent evaluation 
(Wojnowicz et  al., 2009). Or, in language research, 
stage-based models posit that one syntactic structure 
may be initially activated during sentence processing, 
but in ambiguous cases, this structure may be reana-
lyzed and replaced by a new syntactic structure if the 
first turns out to be inappropriate (van Gompel, 
Pickering, & Traxler, 2001). In contrast, dynamic-
constraint-based models propose that multiple syntactic 
structures compete over time to stabilize on a given 
interpretation, without any subsequent reanalysis mech-
anism (Farmer et  al., 2007). Using mouse tracking, 
researchers in these cases were able to provide evi-
dence for a temporally continuous attraction toward 
two responses in parallel (i.e., both “like” and “dislike” 
when evaluating Black people or both syntactic inter-
pretations when processing ambiguous sentences), 
thereby supporting dynamic models. Specifically, at 
each moment during the decision process, mouse tra-
jectories always reflected some dynamically weighted 
coactivation of both implicit and explicit attitudes or 
both syntactic structures, which provided important 
challenges for dual-systems or stage-based models.

Several other early mouse-tracking studies adopted 
a similar logic, including studies in the domains of 
spoken-word recognition (Spivey et  al., 2005), social 
categorization (Freeman et al., 2008), and decision mak-
ing (McKinstry et al., 2008). Taken together, the early 
mouse-tracking research focused on the temporal con-
tinuity of trajectory-attraction effects to make claims 
about the continuous nature of underlying cognitive 
processes. Since then, more than 100 studies have 
exploited mouse tracking to index such attraction 
effects, but they have adopted a theoretical plurality 
that is no longer squarely focused on continuous 
dynamics. This surge of mouse-tracking research, now 
far broader than a debate between dynamic and dual 
systems, has shown that the technique can be leveraged 
across a wide range of domains to measure covert 
activations of responses that do not manifest in explicit 
decisions, including self-control (Sullivan, Hutcherson, 
Harris, & Rangel, 2015), emotion (Mattek et al., 2016), 
memory (Papesh & Goldinger, 2012), group processes 
(Lazerus, Ingbretsen, Stolier, Freeman, & Cikara, 2016), 
ambivalence (Schneider & Schwarz, 2017), intertempo-
ral choice (Dshemuchadse, Scherbaum, & Goschke, 
2013), theory of mind (van der Wel, Sebanz, & Knoblich, 
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2014), self-esteem (Leitner, Hehman, Deegan, & Jones, 
2014), moral cognition (Koop, 2013), subliminal percep-
tion (Xiao & Yamauchi, 2017), embodiment (Lepora & 
Pezzulo, 2015), and deception (Duran, Dale, & McNamara, 
2010), among countless others. Mouse tracking has 
therefore become a powerful measure of multiple 
response activation with wide applicability across psy-
chological science.

Microstructure of Decisions

From their beginnings, mouse-tracking studies sought 
to rule out dual-systems or stage-based models by dem-
onstrating the continuity of trajectory-attraction effects, 
advancing the claim of a coactivation of competing 
processes that together coalesce into a stable response. 
Evidence in support of such alternative models would 
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Fig. 1. Examples of mouse-tracking paradigms. In a depiction of a standard two-choice mouse-tracking paradigm (a), on each 
trial, participants click a start button at the bottom center (see left image), which reveals a stimulus (see center image). Participants 
then move the cursor and click on one of the responses in the top corners (see right image). There are many variants, including 
multichoice paradigms (e.g., four choices), sequences of stimuli (e.g., priming), or responses serving as stimuli themselves (as 
in panel b). As shown in (b), mouse tracking reveals decision microstructure. In conditions of conflict, dynamic models tend to 
predict simultaneously active processes (e.g., impulses toward eating unhealthy food vs. long-term goal of eating healthy food) 
that continuously self-organize into an explicit response. This leads to parallel attraction effects with a unimodal distribution (top 
image). Dual-systems models tend to predict that a System 1 process occurs automatically (e.g., automatic impulse) on certain 
trials, and then a System 2 process intervenes (e.g., controlled goal). This leads to two subpopulations of trials: no-attraction 
trials and extreme midflight correction trials, creating a bimodal distribution (bottom image). An example of mouse tracking used 
as a time-course methodology is given in (c), adapted from Sullivan, Hutcherson, Harris, and Rangel (2015). The strength of 
the relationship (regression coefficients) between trajectories’ angle of movement and the relative tastiness and healthfulness of 
one food option over another is plotted as a function of time, separately for participants with low and high self-control ability. 
Vertical lines indicate onsets of significant effects. Healthfulness was processed as early as tastiness for participants with high 
self-control; for those with low self-control, healthfulness was processed considerably later. Error bands denote standard errors.
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instead be reflected by discrete midflight corrections 
(e.g., automatic impulse toward unhealthy food vs. con-
trolled correction in favor of healthy food; Stillman 
et al., 2017), such that an initial movement straight to 
one response is followed by a discrete corrective move-
ment straight to the opposing response (Freeman et al., 
2008, Study 3). Most realistic models of this kind assume 
that such stage-based corrections are probabilistic to 
some degree and do not necessarily take place on every 
trial. However, they generally assume that responses 
are being drawn from two subpopulations under con-
flict: some trials in which an “inappropriate” impulse 
must be squashed (e.g., “grab the cupcake—no, grab 
the banana!”) and other trials in which it is never acti-
vated in the first place (e.g., “grab the banana!”). 
Accordingly, it is the bimodal nature of trajectories’ 
response distribution that is often crucial in establishing 
a claim of dual-processing stages during mouse tracking 
(Fig. 1b; Freeman & Dale, 2013).

Indeed, such systematic flip-flopping of mouse-
trajectories has now been taken as evidence supporting 
dual-systems or stage-based accounts of several aspects 
of language processing (Barca & Pezzulo, 2015; Dale 
& Duran, 2011; Tomlinson, Bailey, & Bott, 2013) and 
ambivalence (Schneider & Schwarz, 2017). However, it 
need not be an either–or question. For example, social 
categorization has been found to exhibit dynamic 
effects (e.g., for a masculine female face, parallel attrac-
tion to “male” before selecting “female”) but also dual-
systems-like effects (e.g., for a masculine female face, 
initial attraction to “male,” followed by abrupt correc-
tion toward “female”), even within the same task 
(Freeman, 2014). Indeed, in some cases, models that 
take a formal dynamic-systems approach (e.g., for 
social categorization; Freeman & Ambady, 2011a) may 
even predict a trajectory pattern that appears in its 
stage-like sequence to be what one might expect from 
dual systems but instead reflects a rapid “phase transi-
tion” within a single dynamic system (Spivey, Anderson, 
& Dale, 2009). Thus, the important question may not 
be which pattern is observed for a given cognitive 
process, but rather under what conditions these differ-
ent patterns manifest.

Of course, dynamic and dual-systems models are 
only two accounts, albeit popular ones, of cognitive 
processing. In the context of mouse tracking, another 
way to conceive of dual-systems models is that they 
predict two movement components, each of which 
inhabits its own spatiotemporal dynamics (e.g., early 
movement to top left and late movement to top-right; 
but see Spivey, Dale, Knoblich, & Grosjean, 2010). This 
logic can be broadened, however, to more complex 
models that predict the tandem operation of more than 
two systems or processes. For example, the Quad Model 

is a popular model of implicit social cognition that 
posits the existence of four distinct processes (Conrey, 
Sherman, Gawronski, Hugenberg, & Groom, 2005); in 
certain tasks, one may expect four movement compo-
nents that inhabit different parts of the spatiotemporal 
sequence, with four factors biasing the decision process 
at different times. Recently, researchers have taken sev-
eral approaches to characterizing such trajectory com-
ponents, including changes in trajectory direction or 
acceleration/deceleration (e.g., Dale & Duran, 2011; 
Dale, Roche, Snyder, & McCall, 2008), dimensionality-
reduction approaches (Hehman, Stolier, & Freeman, 
2015), and entropy analyses that identify high-speed 
movements and motor “breaks” (Calcagnì, Lombardi, & 
Sulpizio, 2017). Moreover, these and other velocity and 
acceleration analyses may be used to measure addi-
tional characteristics of a decision process, such as 
instability. For instance, individuals with less interracial 
exposure were shown to exhibit more unstable dynam-
ics and abrupt race-categorization shifts when catego-
rizing racially ambiguous faces, an effect predicted by 
dynamic computational models (Freeman, Pauker, & 
Sanchez, 2016).

Such recent work shows that mouse tracking has the 
ability to uncover a microstructure of real-time deci-
sions, revealing dissociable dynamics and processing 
components that can inform theory. Further research is 
certainly needed to link trajectory components to the 
specific theoretical processes under study, but at this 
early stage, it is clear that even when explicit responses 
or RTs may be similar, mouse tracking can qualitatively 
distinguish between vastly different dynamics driving 
those responses or RTs.

A Matter of Time

A critical advantage of mouse tracking is that it can 
sensitively expose millisecond-resolution timing infor-
mation. Time-course analyses can provide powerful 
information about when specific factors are computed 
during an evolving decision or how specific processes 
temporally unfold. In one study, participants were 
asked on every trial to indicate their preference for one 
of two food options for which ratings of tastiness and 
healthfulness were also obtained. At each time point, 
the relationships between mouse trajectories’ angle of 
movement and the relative tastiness and healthfulness 
of one food option over another was examined. For 
people with high self-control ability, tastiness and 
healthfulness began correlating with mouse trajectories 
at the same time during the decision process; for people 
with low self-control ability, healthfulness began cor-
relating with mouse trajectories considerably later in 
time than did tastiness (Fig. 1c). These results suggest 
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that food options’ tastiness has an early advantage over 
healthfulness in driving real-time preferences for peo-
ple with a weak ability to control their impulses 
(Sullivan et al., 2015).

In cultural psychology, research has long suggested 
that people from collectivistic East Asian societies are 
more attuned to contextual associations than people 
from individualistic Western societies (Nisbett, Peng, 
Choi, & Norenzayan, 2001). In one study, American and 
native Chinese participants were presented with White 
and Asian faces embedded in scene environments; 
some environments were more stereotypically associ-
ated with White individuals, and some were more ste-
reotypically associated with Asian individuals. While 
categorizing a face’s race, incongruent contexts led tra-
jectories to veer toward the context-associated response, 
whereas congruent contexts led trajectories to approach 
the context-associated response more directly. More 
importantly, the onset and peak of these contextual 
effects occurred earlier for native Chinese participants 
than for American participants. Such results show that 
visual context exerts an earlier effect for individuals 
from collectivistic societies, suggesting they may have 
a greater preparedness to integrate contextual informa-
tion into real-time perceptions (Freeman, Ma, Han, & 
Ambady, 2013). Additional studies have adopted a simi-
lar approach to explore how specific facial features 
drive gender, race, and age categorization with different 
temporal ordering (Freeman & Ambady, 2011b; Freeman 
et al., 2010). In the domain of subliminal perception, 
recent research showed that top-down attention both 
delays and prolongs the time course of subliminal seman-
tic processing, revealing novel information about how 
attention interacts with nonconscious perceptual pro-
cesses (Xiao & Yamauchi, 2017). Such work shows that 
mouse tracking is a powerful methodology able to dissoci-
ate the timing of different cognitive processes and, in 
some cases, link such timing to individual differences.

Compared with other time-sensitive measures, mouse 
tracking has distinct advantages and limitations. Eye 
tracking in choice tasks relies on discrete saccades 
(tracked as fast as they occur, about 3–4 times/s), 
whereas mouse tracking relies on continuous hand 
motion (tracked as fast as possible, typically about 70 
times/s; Magnuson, 2005). Moreover, the eyes may only 
fixate on one response at a time, whereas the hand may 
inhabit in-between states among multiple responses. 
These qualities make mouse tracking uniquely suited 
to measure how a response evolves continuously over 
time, including any tentative attraction to other possible 
responses. That said, eye tracking may be more sensi-
tive to preattentive processes before initiation of hand 
movement, and thus combining the two may be valu-
able (e.g., Quétard et al., 2016). Event-related potentials 

(ERPs), on the other hand, provide an index of when 
neural processing relevant to a decision process is 
modulated; mouse tracking provides a more direct mea-
sure of how multiple response alternatives accrue evi-
dence to drive the decision over time. However, 
mouse-tracking timing information is most meaningfully 
interpreted in relative terms. For instance, finding that 
a given facial feature begins affecting mouse trajectories 
at 432 ms during age categorization but at 332 ms dur-
ing gender categorization suggests that the facial fea-
ture starts playing a role in gender categorization 100 
ms earlier (Freeman & Ambady, 2011b). However, plac-
ing meaning in 432 or 332 ms with respect to underly-
ing cognitive processing is unwarranted. But because 
how long it takes for a cognitive change to manifest in 
hand movement should be uniform throughout the 
decision process (Cisek & Kalaska, 2005, 2010), relative 
differences in mouse-tracking timing can sensitively 
reveal how much earlier or later different factors reign 
over a decision process with millisecond-level preci-
sion. With ERP, however, timing can be more meaning-
fully interpreted in absolute terms.

The Trajectory Forward

In short, mouse tracking has become a widely appli-
cable measure in psychological science, capable of 
exposing component processes within real-time deci-
sions and their time-course information. Indeed, com-
pared with the gold standard of the RT, even the most 
straightforward mouse-tracking measures (e.g., devia-
tion) are dissociable from RTs or general indecision. 
For instance, greater deviation effects predict stronger 
activation of conflict-monitoring regions even when RT 
is statistically accounted for (Stolier & Freeman, 2017), 
and there are numerous cases in which a deviation 
effect is observed without any RT effect (e.g., Stillman 
et al., 2017; Wojnowicz et al., 2009) or is uniquely pre-
dictive independent of RT (e.g., O’Hora, Carey, Kervick, 
Crowley, & Dabrowski, 2016). Although delayed RTs 
may suggest parallel activation of multiple response 
options, there are numerous alternative explanations as 
well (e.g., slow evidence accumulation of a single 
response). Such dissociations become even clearer when 
considering three- or four-choice paradigms (e.g., Clout-
ier, Freeman, & Ambady, 2014; Tomlinson, Gotzner, & 
Bott, 2017) in which mouse tracking can reveal which 
specific response among multiple unselected alterna-
tives simultaneously attracts participants’ decision trajec-
tory; a delayed RT, on the other hand, may suggest that 
another response was activated in parallel but cannot 
distinguish which one it was. Moreover, as described 
earlier, mouse tracking can detect qualitatively distinct 
decision microstructure and temporal dynamics that 
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may be wildly different, even when two RTs are identi-
cal. A mouse-tracking methodology may therefore 
complement the traditional power of RTs and RT dis-
tributions to gain wholly new insights into a wide range 
of processes across the field.

An important direction under way is mapping mouse-
tracking data to neural representation. Recent research 
has synchronized in-scanner mouse tracking with mul-
tivariate functional MRI (fMRI) to map the covert activa-
tion of specific responses with underlying neural 
representations. For instance, on a given trial, the extent 
to which the mouse trajectory was simultaneously 
attracted to the opposite-category response (e.g., “male” 
for a masculine female face) predicted the extent to which 
the neural representational pattern in face-processing 

regions was similar to that opposite category (Fig. 2; 
Stolier & Freeman, 2017). Or, because of automatic 
stereotype-driven expectations, the extent to which a 
participant was attracted to the “angry” category, even 
for a Black face displaying no anger, predicted the 
extent to which face-processing regions’ neural repre-
sentational pattern approximated the pattern for the 
“angry” category (Stolier & Freeman, 2016). Combining 
mouse tracking with fMRI decoding approaches has 
tremendous potential because this paradigm can iden-
tity which levels of neural representation relate to spe-
cific changes in a decision trajectory. In addition, 
combining mouse tracking with ERPs could provide 
unprecedented information about decision-related tim-
ing. However, an important challenge for future work 

Fig. 2. Schematic illustration of results from Stolier and Freeman (2017). Sets of cubes are meant to illustrate neural-representational multivoxel 
patterns. During synchronized mouse tracking and functional MRI (fMRI), participants categorized the gender or race of typical and atypical 
exemplar faces. On a given atypical trial (e.g., feminine male face), the extent to which participants were attracted to the opposite-category 
response (e.g., “female”) predicted an increased similarity in the face’s neural representational pattern to that opposite category in the right 
fusiform gyrus (rFG), a face-processing region. The opposite category’s neural representational pattern was measured as the average pattern 
of all typical trials for that category (e.g., average of typical female trials). This paradigm can therefore identity which levels of neural rep-
resentation relate to specific dynamics of a decision trajectory. Republished in part with permission of The Society for Neuroscience, from 
Stolier and Freeman (2017); permission conveyed through Copyright Clearance Center.
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aiming to synchronize two such high-resolution time 
series would be to provide sufficient timing precision. 
ERP artifacts, which could easily arise as a result of 
motor movement, would need to be minimized (see 
also Fischer & Hartmann, 2014). Transcranial magnetic 
stimulation (TMS) has also been usefully combined with 
mouse tracking, allowing a causal test of a brain region’s 
role in resolving competitive dynamics, such as in 
semantic categorization (Hindy, Hamilton, Houghtling, 
Coslett, & Thompson-Schill, 2009).

Mouse tracking has often been referred to as an 
implicit measure, but future research should better 
establish the implicit nature of specific effects. Although 
there is some theoretical dispute regarding what con-
stitutes an implicit measure, investigations into whether 
specific mouse-tracking effects are resistant to social 
desirability and reflect nonconscious or introspectively 
inaccessible representations would be important, as 
well as the roles played by automaticity versus control 
or activation processes versus validation processes 
(e.g., Gawronski, LeBel, & Peters, 2007). But the ques-
tion itself may be regarded as problematic, in that it is 
akin to asking whether, in general, the RT method is 
implicit. The answer, of course, is that it depends on 
how one uses it. An RT effect in the context of semantic 
or evaluative priming or an implicit association test may 
be referred to as implicit, yet an RT effect in a time-
unconstrained discrimination task may not. Further 
work is needed to rigorously test the implicit nature of 
mouse-tracking effects in particular task contexts, 
including the roles of methodological factors.

Once upon a time, research on motor control was 
dubbed the “Cinderella of psychology” (Rosenbaum, 
2005), because the broader field neglects it, it was 
argued, believing that motor processes have little to do 
with the cognitive processes of interest (but see, e.g., 
Wolpert & Landy, 2012). Besides showing that cognitive 
and motor processes are more coextensive than previ-
ously believed, researchers’ shift from using discrete 
responses to using continuous hand movement is open-
ing the door to new avenues of investigation into a 
wide range of cognitive processes. The famous Milner 
and Goodale (1995) finding—that a brain-lesioned 
patient could not report visual attributes of a bar in 
front of her, but when her hand reached for the bar, its 
trajectory clearly reflected knowledge of those attri-
butes—tells us that the moving hand may reveal more 
than we think. This may be an extreme example, but 
it makes crystal clear that in hand movement lies 
novel—sometimes covert—information about cogni-
tion. Indeed, this notion is only becoming increasingly 
clear as the mouse-tracking approach to psychological 
science grows and evolves. Further work is certainly 
needed to more deeply understand the link between 
specific hand-movement parameters and theoretical 

constructs, but if the past decade is any example, the 
trajectory looks to be on the rise.
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