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Abstract Researchers have long sought to distinguish be-
tween single-process and dual-process cognitive phenome-
na, using responses such as reaction times and, more
recently, hand movements. Analysis of a response distribu-
tion’s modality has been crucial in detecting the presence of
dual processes, because they tend to introduce bimodal
features. Rarely, however, have bimodality measures been
systematically evaluated. We carried out tests of readily
available bimodality measures that any researcher may eas-
ily employ: the bimodality coefficient (BC), Hartigan’s dip
statistic (HDS), and the difference in Akaike’s information
criterion between one-component and two-component dis-
tribution models (AICdiff). We simulated distributions con-
taining two response populations and examined the
influences of (1) the distances between populations, (2)
proportions of responses, (3) the amount of positive skew
present, and (4) sample size. Distance always had a stronger
effect than did proportion, and the effects of proportion
greatly differed across the measures. Skew biased the meas-
ures by increasing bimodality detection, in some cases lead-
ing to anomalous interactive effects. BC and HDS were
generally convergent, but a number of important discrepan-
cies were found. AICdiff was extremely sensitive to bimod-
ality and identified nearly all distributions as bimodal.
However, all measures served to detect the presence of
bimodality in comparison to unimodal simulations. We
provide a validation with experimental data, discuss

methodological and theoretical implications, and make rec-
ommendations regarding the choice of analysis.
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Introduction

The idea that the human mind makes use of two distinct
kinds of processing enjoys a long tradition, one that can be
traced back at least two millennia. In 350 B.C.E., Aristotle
claimed that the mind is composed of two separate systems,
one supporting intuition and another supporting reasoning.
Over the last few decades, experimental psychology has
seen a wide proliferation of theories and models that mirror
this age-old view. These dual-process accounts have been
extensively reviewed elsewhere (Evans, 2008; Keren &
Schul, 2010). Often, these accounts propose the tandem
operation of one process that is relatively fast, noncon-
scious, automatic, and coarse and a separate process that is
relatively slow, conscious, deliberate, and fine-grained
(Evans, 2008).

In the domain of social cognition, for example, it is
theorized that people initially evaluate others in a noncon-
cious, automatic fashion. This rapid evaluation may be
subsequently modified by a more conscious and deliberate
assessment, which takes more time. For instance, an indi-
vidual’s prejudice may lead to a rapid negative reaction to
another person, but this may be controlled by a more delib-
erate motivation to be nonprejudicial (Devine, 1989). In
memory research, dual-process accounts argue that an item’s
recognition is the result of two separate processes, familiar-
ity and recollection. Familiarity is relatively fast, involving a
coarse assessment of whether an item has been previously
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encountered and lacking access to specific details. Recol-
lection, on the other hand, is relatively slow, involving a
more fine-grained assessment and explicit retrieval of an
item’s details (Atkinson & Juola, 1973; Jacoby, 1991). In
language research, some accounts, such as the unrestricted-
race account, propose that an initial syntactic structure is
selected on the basis of evidence accumulated during sen-
tence processing. When syntax is substantially ambiguous,
this account posits that a separate, slower reanalysis process
may then intervene on the initial, quick commitment to a
syntactic structure if it turns out to be inappropriate (van
Gompel, Pickering, Pearson, & Liversedge, 2005; van
Gompel, Pickering, & Traxler, 2001).

Common to all of these accounts is the presence of two
processes that work on different temporal scales. A conse-
quence of this is the prediction that a participant’s set of
responses, in certain conditions, is being drawn from two
separate populations. This is because, during some trials
within an experimental condition, the second, slow process
may be in agreement with the first, quick process, but on
other trials, the two processes may be in disagreement. For
example, according to an unrestricted-race account, on some
trials in a sentence processing experiment an initially select-
ed syntactic structure will turn out to be inappropriate and
therefore need to be corrected by subsequent reanalysis. On
other trials in the same condition, the initially selected
structure will in fact be correct and need no intervention
(van Gompel et al., 2005). As such, the unrestricted-race
account predicts that a participant’s response distribution
derives from two separate trial populations, one involving
zero intervention and a second involving intervention. Thus,
this account, like many others hypothesizing two indepen-
dent processes, predicts that the distributions of behavioral
measures based on these responses will exhibit bimodality.

Whereas dual-process accounts predict the presence of
bimodality in certain response distributions, other single-
process accounts seek to disconfirm that any bimodality is
present, because these predict unimodal distributions. For
example, constraint-based accounts of sentence processing
argue that the selection of a syntactic structure is accom-
plished by a single process involving dynamic competition,
rather than two independent processes involving reanalysis.
Thus, constraint-based accounts predict that certain re-
sponse distributions will be unimodal. In particular, when
syntax is ambiguous, these accounts predict that trials will
reveal a single, continuous range of competition between the
possible interpretations of the ambiguity, thereby giving
way to a unimodal distribution over behavioral responses
(Farmer, Anderson, & Spivey, 2007). A similar difference in
predictions occurs in social categorization research. When
categorizing the sex of a sex-atypical male face (e.g., one
containing slight feminine features), for example, discrete
stage-based approaches to social categorization predict a

bimodal response distribution. This is because these
approaches assume that an initial categorization is made
on the basis of coarse perceptual features (e.g., female),
which sometimes may need to be intervened on by a more
fine-grained reanalysis (e.g., male) if the initial categoriza-
tion turns out to be incorrect. At other times, the initial
categorization would be correct and need no intervention.
Thus, on some trials there is intervention, and on other trials
there is none, forming a bimodal distribution. A dynamic
interactive approach, on the other hand, predicts a unimodal
distribution. This is because it assumes that such sex-
atypical faces will always trigger the same single process
involving dynamic competition between sex categories
(Freeman & Ambady, 2011a), but that the competition
among possible interpretations this system can make will
give way to a normal distribution over the strength of the
competition (Freeman, Ambady, Rule, & Johnson, 2008).

Examining a response distribution’s characteristics in
order to distinguish between competing theoretical accounts
has a long history with reaction time measurements
(Ratcliff, 1979). Recently, distributional analyses have be-
come increasingly important with the advent of more con-
tinuous, temporally fine-grained measures that index
participants’ tentative commitments to various response
alternatives during online processing. For example, in stud-
ies recording hand movement trajectories (via a computer
mouse, wireless remote, or electromagnetic position track-
er), analysis of a response distribution’s modality has been
crucial in distinguishing between accounts of categorization
(Dale, Kehoe, & Spivey, 2007; Freeman & Ambady, 2009,
2011b; Freeman et al., 2008; Freeman, Pauker, Apfelbaum,
& Ambady, 2010), language processing (Dale & Duran,
2011; Farmer et al., 2007; Spivey, Grosjean, & Knoblich,
2005), decision making (McKinstry, Dale, & Spivey, 2008),
learning (Dale, Roche, Snyder, & McCall, 2008), visual
search (Song & Nakayama, 2008), and attentional control
(Song & Nakayama, 2006). We take this particular method-
ology as one especially ripe for investigating measures of
bimodality and for distinguishing between single-process
and dual-process phenomena.

For example, in one series of studies, participants cate-
gorized faces’ sex by moving the computer mouse from the
bottom center of the screen to either the top-left or top-right
corner, which were marked “male” and “female” (Freeman
et al., 2008). When categorizing sex-atypical faces, partic-
ipants’ mean mouse trajectories showed a continuous attrac-
tion to the opposite sex-category response (on the opposite
side of the screen), relative to sex-typical faces. This mean
continuous-attraction effect could reflect either a single-
process phenomenon involving dynamic competition or,
alternatively, a dual-process phenomenon involving an
initial analysis and subsequent reanalysis. If the effect has
a unimodal distribution, in which some trials involve strong
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attraction, some medium attraction, and some weak attrac-
tion, it would suggest that sex-atypical faces triggered dy-
namic competition between parallel, partially active sex
categories. However, if the effect has a bimodal distribution,
in which some trials involve zero attraction and others
involve extremely strong attraction, it would suggest that
categorization of sex-atypical faces involved dual processes
that sometimes agreed and sometimes conflicted. On some
trials, an initial perceptual analysis and subsequent fine-
grained reanalysis would agree, resulting in zero attraction
(a discrete movement straight to the correct category). On
other trials, the initial analysis (e.g., female) would turn out
to be incorrect and require intervention from later reanalysis
(e.g., male), resulting in extremely strong attraction (an
initial discrete movement to the incorrect category, which
would have to be redirected midflight by a corrective move-
ment straight to the correct category; Freeman et al., 2008).

Thus, in accounts hypothesizing two independent pro-
cesses, sometimes the two processes can agree with each
other. For the sake of presentation here, we will call this
kind of response “Mode 1.” At other times the two processes
can be in conflict, and we will call this “Mode 2.” A
schematic illustration appears in Fig. 1, which shows how

a dual process introduces bimodal features using the two-
choice mouse-tracking paradigm (although it applies to any
behavioral measure—e.g., reaction times). In this paradigm,
typically a stimulus is presented and participants move the
mouse from the bottom center of the screen to the top-left or
top-right corner (Freeman & Ambady, 2010; Spivey et al.,
2005). In this figure, the top-left corner represents the cor-
rect response and the top-right corner represents the incor-
rect response. Each panel is a depiction of one experimental
condition. The top panel shows one unimodal population of
trajectories that all show an attraction toward the incorrect
response (sometimes strong, sometimes medium, sometimes
weak), which is often interpreted by single-process accounts
as dynamic competition. The lower panels show bimodal
populations of trajectories, in which dynamic competition is
not present. Instead, some proportion (1 – p; Mode 1) of
trials involve a discrete movement toward the correct cate-
gory, and the rest of the trials (p; Mode 2) involve an initial
discrete movement toward the incorrect category, which is
then redirected in midflight by a discrete movement to the
correct category. The middle panel depicts a population of
trajectories with a recognizable amount of separation be-
tween Mode 1 and Mode 2 responding, whereas the bottom
panel depicts a population with more extreme separation.
Both panels depict a pattern of results consistent with dual-
process accounts, where Mode 1 responses occur when an
earlier and a later process agree and Mode 2 responses occur
when the two processes conflict. Importantly, when all
trajectories in each panel are averaged together into a mean
trajectory for the experimental condition, the three mean
trajectories would look quite similar, resembling something
like the top panel’s trajectory (see Freeman et al., 2008,
Study 3). This highlights the importance of examining dis-
tributional characteristics, as the underlying pattern of
responses may be quite different, although the mean effects
look virtually the same.

As is shown in Fig. 1, a response distribution’s shape
would be strongly affected by single versus dual modes of
responding, with dual modes introducing bimodal features.
Specifically, two parameters are likely to affect the distribu-
tional shape. One of these parameters is the distance be-
tween mean responses in Mode 1 and Mode 2. In a mouse-
tracking paradigm, this could be the difference in the trajec-
tories’ deviations toward the incorrect response between
Mode 1 and Mode 2 responses. As Mode 2 responses
become more extreme, the distance increases between the
two peaks of the bimodal distribution, as illustrated in
Fig. 1. This is not limited to a mouse-tracking paradigm;
for example, this distance could refer to a difference in
reaction times (e.g., Atkinson & Juola, 1973; Ratcliff,
1979). The other parameter is the proportion of responses
in Mode 2. If the likelihood of a Mode 2 response is 25 %
(as in Fig. 1), it is easy to superficially observe bimodality in

Fig. 1 A schematic demonstration of how a dual process introduces
bimodal features, using the distribution of responses. In this paradigm,
typically a stimulus is presented and participants move the mouse from
the bottom center of the screen to the top-left or top-right corner
(Freeman & Ambady, 2010; Spivey et al., 2005)

Behav Res



the response distribution. However, if the likelihood of a
Mode 2 response is only 5 %, for example, observing
bimodality is likely to be substantially more difficult, be-
cause the Mode 2 population could be obscured by the
considerably larger Mode 1 population, thereby feigning
unimodality.

Distinguishing between unimodality and bimodality

Researchers have used several measures to distinguish be-
tween unimodality and bimodality, including the bimodality
coefficient (BC; SAS Institute, 1989), Hartigan’s dip statistic
(HDS; Hartigan & Hartigan, 1985), and the difference in
Akaike’s information criterion (AIC; Akaike, 1974) between
one-component and two-component Gaussian mixture distri-
bution models (McLachlan & Peel, 2000). An extensive dis-
cussion of these measures is beyond the scope of this article,
but we provide a brief description of each. In the present work,
we focus on utilizing these measures “out of the box”—that is,
on how a researcher’s estimation of bimodality may be done
with readily available scripts and other sources. The measures
that we employ have this property of accessibility and ease of
application (see the Appendix for our code).

The BC is based on an empirical relationship between
bimodality and the third and fourth statistical moments of a
distribution (skewness and kurtosis). It is proportional to the
division of squared skewness with uncorrected kurtosis, BC
∝ (s2 + 1)/k, with the underlying logic that a bimodal
distribution will have very low kurtosis, an asymmetric
character, or both; all of these conditions increase BC. The
values range from 0 and 1, with those exceeding .555 (the
value representing a uniform distribution) suggesting bi-
modality (SAS Institute, 1989).

The HDS is a statistic calculated by taking the maximum
difference between the observed distribution of data and a
uniform distribution that is chosen to minimize this maxi-
mum difference. The idea is that repeated sampling from the
uniform (with the sample size of the original data) produces
a sampling distribution over these differences; a bimodal (or
n-modal) distribution is one in which the HDS is at or
greater than the 95th percentile among all sampled values.
In other words, as compared to the uniform distribution
(which Hartigan & Hartigan, 1985, argued to be the best
choice for testing unimodality), a multimodal distribution
has statistically significant disparities in its distribution
function. Thus, the HDS is given to null-hypothesis logic
and is inferential; if p < .05, the distribution is considered to
be bimodal or multimodal (Hartigan & Hartigan, 1985).

Finally, the AIC is a well-known information-theoretic
goodness-of-fit measure for an estimated statistical model,
with lower AIC values indicating better fit. To assess mo-
dality, one can fit the observed data using one-component
(i.e., unimodal) and two-component (i.e., bimodal) Gaussian

mixture distribution models to determine which of the two
models minimizes AIC (McLachlan & Peel, 2000). If the
one-component model minimizes AIC, the distribution is
better described as unimodal; if the two-component model
minimizes AIC, the distribution is better described as bi-
modal. Importantly, the AIC weighs the likelihood score of
a model against the number of parameters used to construct
the model. If the AIC for a bimodal mixture model is smaller
than that of a unimodal model, it suggests that the goodness
of fit exceeds the cost of having an additional component in
the model.1

As described earlier and exemplified by Fig. 1, the pres-
ence of a dual process can affect a response distribution by
introducing bimodal features. The degree of bimodality
would be influenced by two important factors, the distance
in mean responses between Modes 1 and 2, and the propor-
tion of responses in Mode 2 (vs. Mode 1). To examine how
these factors affect the distributional shape and the detection
of bimodality using BC, HDS, and AIC measures, we sys-
tematically manipulated them in a number of simulations.
We also manipulated the degree of positive skewness in the
response distribution. It is quite common for reaction time
distributions to exhibit positive skewness, and indices of
spatial attraction, curvature, or deviation in hand-trajectory
data (see Freeman & Ambady, 2010) commonly exhibit
positive skewness as well. Given that such distributions
often feature positive skewness, it is important to understand
how skew might influence the detection of bimodality.

The HDS measure initially proposed in Hartigan and
Hartigan (1985) was meant to test the null hypothesis of
unimodality against the alternative hypothesis of multimo-
dality, with the null of an asymptotic uniform distribution.
Though it is widely utilized in the bimodal context, the test
was intended to explore departures from unimodality of a
kind that may have more than two modes. Essentially, it
tests the departure of an observed density function from a
unimodal one (assumed to have a single inflection point
between convex and concave segments). This means that
HDS is relatively more robust to skew: Regardless of the
location of the center of the observed function, HDS tests
the observed function against the presence of a single in-
flection point. In both BC and AIC, high skew may signif-
icantly impact the test for the presence of more than one
mode, so that both may sometimes find a spurious second
mode in long-tailed, skewed distributions (a point originally
made by Hartigan & Hartigan, 1985). Nevertheless,
researchers have often used measures such as BC or AIC
with distributions containing high skew.

1 We found that an improvement in AICdiff could be achieved by
choosing a threshold proportion, often within the range of .1 to .25.
However, there appears to be no a priori basis upon which to choose
this optimal threshold, making it difficult to apply in the context of a
single sample.
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Another important, yet often underappreciated, issue in
judging the modality of distributions in psychological
experiments is sample size. For example, in the original
mouse-tracking study (Spivey et al., 2005), the authors
noted that having too few trials within an individual subject
posed problems for assessing bimodality on a per-subject
basis; instead, they opted for assessing it at the group level.
This has now become the norm in mouse-tracking research
(see, e.g., Freeman & Ambady, 2010). How many trials,
then, is too few? In general, the sampling error of skewness
and kurtosis are high at smaller sample sizes (10 or fewer),
suggesting that the BC, which is computed from these param-
eters, may be unstable at smaller sample sizes. HDS is based
on an empirical resampling from a uniform distribution, and
thus may naturally correct for smaller sample sizes, as the
simulated distribution will accommodate this. Examining the
performance of all three measures—BC, AIC, and HDS—
with unimodal and bimodal distributions of varying skew and
sample size, among other factors that are known to drive
modality, has therefore long been needed.

The present work

Given that the BC and AIC measures (and not the HDS
measure) may be substantially biased by skew and sample
size, we hypothesized that HDS may be an overall more
robust measure for judging the modality of a distribution. As
we have discussed, adjudicating between unimodality and
bimodality has become an increasingly important issue in
psychological experiments, with unimodal and bimodal out-
comes often leading to opposite interpretations of cognitive
dynamics (e.g., Dale & Duran, 2011; Farmer et al., 2007;
Freeman et al., 2008). Here, we provide a comprehensive
analysis of three modality measures with the aim of making
a recommendation for measure selection in future research.
To this end, we have taken a two-pronged approach. First,
we systematically examined the measures’ performance in
simulations in which the factors described above were tight-
ly controlled and varied. Then, to validate the results and
increase their generality, we examined the measures’ perfor-
mance with previously published experimental data, which
contained distributions theoretically known to be either
unimodal or bimodal.

Simulations

We independently varied the four parameters mentioned
above—distance, proportion, skew, and size—across 1,760
different simulations (8 levels of distance × 11 levels of
proportion × 5 levels of skew × 4 levels of size). In each
simulation, 250, 500, 1,000, or 2,000 simulated observations
were randomly sampled from a standard Gaussian

distribution (depending on the size parameter). These
might correspond to trials aggregated across subjects
that could reflect, for example, reaction times or an
hand trajectory’s spatial attraction, curvature, or devia-
tion. They could also correspond to trials within a
single subject. In general, however, these numbers
reflected a standardized distribution that may be ob-
served in a wide range of behavioral measures, such
as reaction times (likely the most common behavioral
measure subjected to distribution analysis; Van Zandt,
2000).

Method

To simulate a separate population of Mode 2 responses, a
varying proportion of the total observations was shifted by a
varying distance (i.e., a varying amount of SDs) by adding a
constant (the distance parameter). The proportion was var-
ied as 0 %, 5 %, 10 %, 15 %, 20 %, 25 %, 30 %, 35 %,
40 %, 45 %, and 50 %. Thus, when proportion 0 5 % and
size 0 2,000, 100 observations belong to Mode 2, and when
proportion 0 50 % and size 0 2,000, 1,000 observations
belong to Mode 2. We assumed that when proportion 0 0 %,
a distribution is unimodal, and when proportion > 0 %, it is
bimodal. The distance was varied over 1, 2, 3, 4, 5, 6, 7, and
8 SDs. When distance 0 1 SD, the population of Mode 2
responses is quite close to the population of Mode 1
responses (1 SD away), and when distance 0 8 SD, the
population of Mode 2 responses is quite extreme, consider-
ably shifted away from the population of Mode 1 responses
(8 SDs away). To introduce varying levels of positive skew,
each observation was then exponentiated to the power of 1,
2, 3, 4, or 5 (the skew parameter). Thus, when skew 0 1, the
distribution is normal with zero skew, and when skew 0 5,
the distribution is highly positively skewed. This was done
after shifting responses. All observations were then restan-
dardized (M 0 0, SD 0 1).

We assessed bimodality in the final resulting distribution
by computing BC and HDS in MATLAB (Mechler, 2002).
The resulting distribution was also fit to a one-component
and a two-component Gaussian mixture distribution model
(using an expectation-maximization algorithm with gmdis-
tribution.fit in MATLAB; McLachlan & Peel, 2000), and
AIC was computed for the two models (one-component,
AIC1; two-component, AIC2). We then computed a propor-
tional difference score (AICdiff) that represents the relative
better fit of the bimodal mixture model over the unimodal
one: (AIC1 – AIC2)/max(AIC1, AIC2) (see Wagenmakers &
Farrell, 2004). See Appendix for all code.

Each of the 1,760 simulations was run 10 times, wherein a
new set of responses were sampled from a Gaussian distribu-
tion and processed again through the above procedures.
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Results

We present the results of the simulations in the following
way. First, we examine the extent to which the bimodality
measures would predict that scores derived from a unimodal
distribution (proportion 0 0 %) or a bimodal distribution
(proportion > 0 %) were indeed bimodal. Second, we assess
how the various parameters influence the behavior of the
measures. To do so, we evaluate the relative contributions of
the distance, proportion, skew, and size parameters on the
bimodality measures. We regressed BC, HDS, and AICdiff

(in separate analyses) onto mean-centered distance, propor-
tion, skew, and size values. Because we suspected the pos-
sibility of interactive influences on the bimodality measures,
we modeled interaction effects as well. Most effects were
highly significant (p < .001), as can be seen below in
Table 1. Depicted in Figs. 2 and 3 are contour maps that
plot BC, HDS, and AICdiff values as a function of the
distance and proportion parameters, separately for zero-
skew distributions (skew exponent 0 1) and highly positive-
ly skewed distributions (skew exponent 0 5), and separately
for large distributions (size 0 2,000; Fig. 2) and small dis-
tributions (size 0 250; Fig. 3). We expected that as propor-
tion and distance increased, bimodality should be more
easily detected. More important was how skew and size
might influence the bimodality measures, perhaps interac-
tively with the proportion and distance parameters. Our
focus was on the relative sensitivity of the bimodality meas-
ures in response to change in these parameters. First, we
explored how the bimodality measures helped to detect
proportions of 0 % (unimodal) versus > 0 % (bimodal).

Bimodality detection

All three measures significantly covaried with the bimodal-
ity of the simulated data sets. To show this, we created a
dichotomous code for each of the 17,600 simulations, scor-
ing unimodal (proportion 0 0 %; coded as 0) and bimodal
(proportion > 0 %, coded as 1) simulations. Because bimod-
ality is theoretically known to be the case for any proportion
that is > 0 %, we could use this dichotomous score in a
logistic regression to test whether the three measures, BC,
HDS, and AICdiff, at minimum covaried with the presence
of bimodality. This was the case, and the three measures
covaried to similar extents. The coefficient estimates in the
logistic regression were 8.7, −5.8, and 8.5 for BC, HDS, and
AICdiff, respectively (ps < .0001). This result merely indi-
cates that the measures behaved as expected: They
covaried systematically around the presence of bimodali-
ty, on average, across all parameters. However, it is a
separate question whether a researcher, inspecting one of
these measures, would infer from it that there was signif-
icant presence of bimodality. For this to occur, the re-
searcher would judge BC to be greater than .555, HDS to
be p < .05, and AICdiff to be greater than 0.

When looking at the scores in this way, the measures
behaved considerably differently. In a signal detection frame-
work, we first considered false positives or “misses” in the
simulations, when bimodality was inferred though none was
actually present in the population (given our parameters).
Among the simulations with unimodality (proportion 0

0 %), BC was beyond the .555 threshold 21 % of the time;
HDS had a significant p value 0 % of the time; and AICdiff

judged the two-component Gaussian model to be a more
economical fit 81 % of the time. AICdiff thus generated a large
number of false positives, judging 81 % of the unimodal
simulations to be best fit by a two-component model. BC
was second in its number of false positives, judging 21 % of
the unimodal simulations to be past threshold for bimodality.
HDS produced 0. We carried out a similar test, this time
looking at the inference that one would make about bimodal-
ity when the proportion was > 0%: that is, for true positives or
“hits.” In this case, BC hit threshold in 65% of the cases; HDS
in 58 % of the cases; and AICdiff in 94 % of the cases. The
pattern of false negatives or “false alarms” therefore had a
complementary pattern: HDS was more conservative, judging
only just over half of the simulated bimodal distributions as
being bimodal. AICdiff judged most of the bimodal distribu-
tions to be bimodal. This may suggest that the Gaussian
mixture model assesses distributions to be more economically
fit by two-component models overall. Together, these results
led HDS to have the highest sensitivity to bimodality (d' 0
3.43), BC to have the second highest (d' 0 1.46), andAICdiff the
lowest (d' 0 0.74). A summary of the signal detection character-
istics of the three measures appears in Table 2.

Table 1 Standardized β values for distance, proportion, skew, and size
effects on bimodality measures

Parameter BC HDS AICdiff

Skew 0.167*** −0.206*** 0.354***

Distance 0.921*** −0.589*** 0.795***

Proportion −0.093*** −0.44*** −0.195***

Size −0.014*** −0.067*** 0.012***

Skew × Distance −0.090*** 0.170*** −0.126***

Skew × Proportion −0.157*** −0.026*** −0.120***

Distance × Proportion 0.043*** 0.050*** −0.036***

Skew × Size −0.015*** −0.018*** −0.002
Distance × Size 0.022*** −0.032*** 0.002

Proportion × Size 0.006** 0.057*** 0.000

Skew × Distance × Proportion 0.026*** 0.091*** 0.014***

Skew × Distance × Size 0.008*** 0.027*** −0.001
Skew × Proportion × Size −0.001 0.009 −0.004
Distance × Proportion × Size 0.000 0.067*** 0.003

Skew × Distance × Proportion
× Size

−0.001 0.002 −0.002

* p < .05. ** p < .01. *** p < .001
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The previous analysis tested the detection capability of
the bimodality measures when the population was
known. We also asked how each of our measures would
be influenced by the four parameters. To this end, we
constructed a regression model predicting each of the
measures using the parameters that we manipulated in
the simulations. Because we found that the size parame-
ter had the smallest and most negligible influence on the
three measures (discussed below), for ease of presenta-
tion we will first describe the influences of the distance,
proportion, and skew parameters on each measure, and
focus our discussion on distributions of size 0 2,000.
Afterward, we will describe the influence of size on the
three measures.

Bimodality coefficient (BC)

As described above, the BC ranges from 0 to 1, with values
greater than .555 suggesting bimodality. The distance be-
tween Mode 1 and Mode 2 responses had a considerably
stronger influence on the BC (β 0 .92) than did the

proportion of Mode 2 responses (β 0 −.09), the degree of
skew present (β 0 .17), or the size of the sample (β 0 −.01).
Increases in distance led to increases in BC, indicating more
bimodality. Distributions with a Mode 2 population farther
than 6 SDs away from the Mode 1 population were all
recognized as bimodal, and distributions with a Mode 2
population within 3 SDs from the Mode 1 population were
all recognized as unimodal, regardless of proportion or skew.

Somewhat unexpectedly, proportion had a very small
negative overall influence on BC. This main effect was
qualified by strong interactive influences. In zero-skew dis-
tributions (skew exponent 0 1), a Mode 2 proportion of 5 %
required approximately a distance of 6 SDs to detect bimod-
ality (BC > .555), and the required distance declined to
approximately 4 SDs by a proportion of 20 %, remaining
at that level until a proportion of 50 %. In highly positively
skewed distributions (skew exponent 0 5), however, a pro-
portion of 5 % required an approximate distance of 3 SDs to
detect bimodality, and this remained roughly the same until
a proportion of 20 %, which rose thereafter to approximately
5 SDs by a proportion of 50 % (Fig. 2). Thus, skew had

Fig. 2 Contour maps depicting
the BC, HDS, and AICdiff

measures as a function of the
distance and proportion
parameters, separately for zero-
skew distributions (skew
exponent01) and highly posi-
tively skewed distributions
(skew exponent05), for simu-
lations in which size02,000.
Blue colors indicate unimodal-
ity, and red colors indicate
bimodality
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several interesting influences on bimodality detection with
the BC measure. First, it made bimodality detection easier,
with an overall greater propensity for BC > .555. Second,
whereas BC increased as proportion increased for zero-skew
distributions, BC decreased as proportion increased for
highly positively skewed distributions. Thus, the presence
of positive skew made distributions with higher proportions
of Mode 2 responses require a larger, rather than a smaller,
distance for bimodality to be detected. This might have been
the case because the elongated positive tail of the Mode 1
distribution, due to positive skew, led the Mode 1

distribution to “blend” into the Mode 2 distribution, thereby
requiring a greater distance between the two distributions
for bimodality to be detected.

Hartigan’s dip statistic (HDS)

For the HDS measure, we used p values resulting from
Hartigan’s dip test. Thus, HDS values range from 0 to 1,
with values less than .05 indicating significant bimodality,
and values greater than .05 but less than .10 suggesting
bimodality with marginal significance. As with the BC
measure, distance had a considerably stronger influence
(β 0 −.59) than did proportion (β 0 −.44) or skew (β 0
−.21). The size parameter appeared to have a negligible
influence (β 0 −.07). As distance increased, HDS decreased.
More heavily than in the BC results, the presence of positive
skew biased HDS values, leading to a greater propensity
overall for distributions to be recognized as bimodal. Dif-
fering from the BC results, however, proportion had a strong
influence on HDS (β 0 −.44, as compared with β 0 −.09 for
the BC measure). Thus, as proportion increased, HDS

Table 2 Signal detection results with bimodality measures using sim-
ulated data

Measure d' Hit Miss False
Alarm

Correct
Rejection

BC 1.46 64 % 36 % 14 % 86 %

HDS 3.43 65 % 35 % 0 % 100 %

AICdiff>0 0.74 95 % 5 % 81 % 19 %

Fig. 3 Contour maps depicting
the BC, HDS, and AICdiff

measures as a function of the
distance and proportion
parameters, separately for zero-
skew distributions (skew
exponent01) and highly posi-
tively skewed distributions
(skew exponent05), for simu-
lations in which size0250. Blue
colors indicate unimodality, and
red colors indicate bimodality
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reliably decreased, and the required distance to detect bi-
modality reliably decreased as well. This finding makes
sense given the reliance of HDS upon distribution differ-
ences, because a higher density of shifted observations
would induce higher maximum differences in this range of
the distribution.

As with the BC measure, the distance threshold for
detecting bimodality changed as a function of proportion.
In zero-skew distributions, a low proportion of 5 % required
a distance of roughly 7 SDs to detect bimodality, and this
declined to roughly 5 SDs with the higher proportion of
10 %. The distance threshold for detecting bimodality de-
creased gradually thereafter, with a proportion of 25 %
requiring a distance of 4 SDs, and a proportion of 50 %
requiring a distance of 3 SDs. In highly positively skewed
distributions, this same pattern obtained as well, except that
the presence of positive skew overall lowered the distance
threshold for detecting bimodality across all levels of pro-
portion. Thus, for example, whereas a proportion of 10 %
required a distance of 5 SDs in zero-skew distributions, it
required only a distance of 3 SDs in highly positively
skewed distributions.

Akaike’s information criterion difference (AICdiff)

AICdiff values range from −1 to 1, with positive values
suggesting bimodality, and negative values suggesting
unimodality. As with the BC and HDS measures, distance
had a considerably larger influence (β 0 .80) than either
proportion (β 0 −.20) or skew (β 0 .35). As with the other
measures, size again appeared to have a negligible influence
(β 0 .01). The influence of proportion was relatively strong, but
in the unexpected direction, with increases in proportion overall
leading to decreases in AICdiff and leading to the recognition of
distributions as unimodal. Most striking was that the AICdiff

measure recognized nearly all distributions as bimodal, except
for zero-skew distributions with a distance of 1 SD. Thus, the
measure is extremely liberal, recognizing bimodality with even
the lowest proportions and smallest distances of Mode 2
responses. At least one reason for this, it appeared, is that the
two-component model does not converge after 100 iterations in
cases with minimal bimodality (i.e., low distance values). This
may have rendered the AIC estimation in the two-component fit
unreliable, and in many cases it resulted in an AICdiff that was
positive (i.e., lower AIC for the bimodal model).

Influence of sample size

As described above, the size parameter had the weakest
influence across the BC (β 0 −.01), HDS (β 0 −.07), and
AICdiff (β 0 .01) measures. That said, it did have some
minor but interesting interactions with the other parameters
on bimodality detection (see Table 1). For the BC measure,

size had a negligible influence for distributions with low
skew (e.g., skew exponent 0 1). For distributions with high
skew (e.g., skew exponent 0 5), however, a smaller sample
size made distributions with a large distance but small
proportion more likely to be detected as bimodal. For the
HDS measure, the lowering of sample size made bimodality
detection overall more conservative. No substantive differ-
ences by size were found for distributions with low skew
(skew exponent 0 1). However, when distributions
contained high skew (skew exponent 0 5), those with a large
proportion but small distance were less readily detected as
bimodal with small samples (size 0 250). For the AICdiff

measure, there were no major differences across sample
sizes. Overall, bimodality detection became more conserva-
tive with a smaller sample size, but, given how liberal the
measure is, nearly all distributions were recognized as bi-
modal regardless. One notable result was that in distribu-
tions with low skew (skew exponent 0 1) and small
distance, the lowering of sample size decreased bimodality
detection, whereas this was not the case in distributions with
high skew (skew exponent 0 5). Taken together, across the
three measures, sample size had the weakest influence on
bimodality detection and introduced relatively negligible
effects.

Discussion

The analyses of our simulated data suggest that the HDS
measure may be the most robust measure for detecting
bimodality. It had the highest sensitivity (d') in distinguish-
ing bimodality from unimodality, and it also was immune to
some of the interactive effects with skew that plagued the
BC measure. Thus far, HDS appears to be an optimal
choice. Whereas analyses of simulated data afforded us
control and comprehensiveness, we also sought to validate
their applicability. Thus, we examined the performance of
the measures in experimental data for which the modality of
particular distributions was theoretically known.

Experimental data

To this end, we made use of the previously published studies
in Freeman et al. (2008). For Studies 1 and 2 in that work,
the researchers asked participants to categorize the sex of 20
sex-typical and 20 sex-atypical faces using a mouse-tracking
paradigm. Thus, on every trial the participants moved the
mouse from the bottom center of the screen to a “male” or
“female” response in the top-left or the top-right corner.
Study 1 was based on real faces, and Study 2 on
computer-generated faces. We would expect trajectories for
the sex-typical faces to be relatively direct, with little cur-
vature (e.g., as is seen with the Mode 1 responses in the
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bottom panels of Fig. 1). In Study 3, participants were
presented with the combined 40 sex-typical faces of Studies
1 and 2. This time, however, as soon as the participants
initiated a movement, on half of the trials the “male” and
“female” response buttons suddenly changed color and
switched sides. On the other half of the trials, the responses
remained constant. For the “switch” trials, therefore, we
would expect the trajectories to have extreme curvature, in
the form of discrete-like errors, when the participants ini-
tially pursued one alternative and then redirected in mid-
flight toward the other alternative (e.g., as is seen with the
Mode 2 responses in the bottom panels of Fig. 1). For the
normal trials, we would expect trajectories to be direct and
to exhibit low curvature.

Thus, when averaging the degrees of curvature across all
trajectories for sex-typical faces in Studies 1 and 2, we
would expect a unimodal distribution in which all trajecto-
ries exhibited low curvature. When averaging the degrees of
curvature across all trajectories for sex-typical faces in
Study 3, however, we would expect a bimodal distribution.
This would occur because on half of the trials participants’
trajectories would exhibit extreme curvature (“switch” tri-
als), and on the other half their trajectories would exhibit
low curvature. As such, the trajectory data of Freeman et
al.’s (2008) studies afford us two distributions, one theoret-
ically known to be unimodal and the other theoretically
known to be bimodal. Here, we determined how the three
bimodality measures would perform in distinguishing the
modality of these distributions.

Method

Study 1 involved 23 participants, each categorizing 20
sex-typical faces, with eight excluded trials. Study 2
involved 25 participants each categorizing 20 sex-
typical faces, with 12 excluded trials. This resulted in a
total of 940 trials for Studies 1 and 2, forming the
theoretical unimodal distribution. Study 3 involved 21
participants each categorizing 40 sex-typical faces, with
27 excluded trials. Half of these trials were “switch”
trials, and half were control trials. This resulted in a total
of 813 trials for Study 3, forming the theoretical bimodal
distribution. Note that the stimuli from which the two
distributions are derived were identical.

Results

All trajectories were fit to 100 normalized time bins (101
time steps) using linear interpolation and were rescaled to a
standard coordinate space. A measure of trajectory curva-
ture, area under the curve (AUC), was computed for every
trial; this was the geometric area between the observed
trajectory and an idealized response trajectory (a straight

line between the trajectory’s start- and endpoints). Any
curvature heading away from the opposite-category re-
sponse was computed as negative area (and summed with
any positive area; see Freeman & Ambady, 2010).

Using the z distributions of the trajectories’ AUC val-
ues, the theoretical unimodal distribution (n 0 940, skew-
ness 0 0.20, kurtosis 0 –0.79) was recognized as
unimodal by BC (b 0 .469) and HDS (p 0 .12), but not
by AICdiff (.04), which, as we noted, tends to overestimate
bimodality. Conversely, the theoretical bimodal distribu-
tion (n 0 813, skewness 0 0.13, kurtosis 0 –1.35) was
recognized as bimodal by BC (b 0 .614), HDS (p <
.0001), and AICdiff (.16). Thus, two of the three measures
successfully distinguished the experimental unimodal and
bimodal distributions.

Discussion

These results demonstrate that two of the bimodality meas-
ures were able to successfully distinguish unimodal and
bimodal distributions in a relevant experimental context,
such as the mouse-tracking paradigm. This increases the
generality of the measures and indicates that they are able
to be applied to experimental data.

General discussion

The results of our simulations revealed a number of impor-
tant divergences between the BC, HDS, and AICdiff meas-
ures in their sensitivity to bimodality, as well as a number of
convergences. Across all measures, the distance between
Mode 1 and Mode 2 populations had a considerably stron-
ger influence on bimodality detection than did proportion or
skew, with increases in distance leading to increases in
bimodality. The proportion of Mode 2 responses differed
in its influence, with a main effect of proportion quite weak
in the BC simulations and quite strong in the HDS simu-
lations. A main effect of proportion was also relatively
strong in the AICdiff simulations, but it did not bear a
consequential effect on distinguishing between unimodality
versus bimodality because virtually all distributions were
recognized as bimodal. The introduction of positive skew
had considerable influences on bimodality detection, but in
interestingly different ways between the measures, which
are discussed later. Finally, sample size had a relatively
weak influence on all three measures.

Overall, in part on the basis of these influences, HDS had
the highest sensitivity (d') in distinguishing unimodality
from bimodality, with BC coming in second, and AICdiff

last (see Table 2). All three measures, however, did success-
fully identify an experimental distribution theoretically
known to be bimodal as being bimodal. The HDS and BC

Behav Res



measures (but not AICdiff) also successfully identified an
experimental distribution theoretically known to be unim-
odal as being unimodal. This is encouraging, and suggests
that both the HDS and BC measures may, in some cases, be
successfully applied to experimental data. However, bear in
mind that the two experimental distributions examined here
were limited cases. They provide promise for the applica-
bility and generality of the measures, but represent two
points in a quite large parameter space explored more
systematically with the simulations. Future research
should consider examining the applicability of the meas-
ures to a wider range of experimental distributions. For
the time being, we find that the measures are able to be
successfully applied in some cases, but the more compre-
hensive results of the simulations suggest that the HDS
measure may be most successful with the largest possible
set of distributions. Thus, both HDS and BC generally
appear to be applicable to a relevant experimental context
such as the mouse-tracking paradigm. But, more impor-
tantly, the simulation results suggest that HDS would be a
more sensitive and accurate measure, when considering
the full parameter space that exists across researchers’
experiments.

The BC and HDS measures were generally convergent,
recognizing bimodality and unimodality in similar distribu-
tions, whereas the AICdiff measure behaved quite differently.
The AICdiff measure was extremely liberal at even the
lowest proportions and smallest distances of Mode 2
responses, recognizing bimodality in virtually all distribu-
tions. Because the BC and HDS measures operated similar-
ly, we directly compared these two measures in further
detail. We specifically focused on distributions with large
sample size (size 0 2,000). For both measures, distance had
a strong main effect, with larger distances leading to more
bimodality. The main effects of proportion, however, dif-
fered considerably. As expected, the HDS measure was
strongly influenced by proportion, with increases in pro-
portion resulting in decreases in HDS and the lowering of
the required distance to detect bimodality. The BC mea-
sure, however, was negligibly influenced by a main effect
of proportion. Instead, in BC simulations (but not HDS
simulations), skew interacted with proportion in such a
way that, in highly positively skewed distributions,
increases in proportion resulted in decreases in BC and
the raising, rather than the lowering, of the distance re-
quired to detect bimodality. As discussed earlier, this may
have been due to a “blending” of the elongated positive
tail of the Mode 1 population into the Mode 2 population.
The HDS measure was immune to this anomalous inter-
active effect.

In fact, when we examine the BC and HDS measures
more closely, we can see why this was the case. The BC
relies on the intuition that bimodality will involve a potential

increase in asymmetry (skew, along with a drop in kurtosis).
Thus, increasing skew even in a completely unimodal con-
text increases BC consistently, and with extreme skew it can
induce spurious inferences of two modes. While HDS did
appear to have a main effect of skew, when we consider the
way in which the measure is calculated, an interesting
pattern falls out (for a full description of HDS, see Henderson,
Parmeter, & Russell, 2008). The HDS operates by judging
the degree to which the theoretical uniform distribution (the
“asymptotic unimodal” case, with a single in-the-limit in-
flection point) strays from the observed distribution. The
measure does so by looking to the convex and concave
portions of the observed distribution, and it finds the uni-
form distribution that minimizes the maximum distance
between the uniform and observed distributions. By obtain-
ing a sampling distribution of a dip statistic (based on those
distances), it determines the extent to which the observed
case strays. This means that any distribution with a single
inflection point is very unlikely to be assessed as bimodal.
This is the case even with extreme skew: As BC increases
with skew in a unimodal case (0 % proportion), HDS does
not approach p < .05 at all; in fact, increasing skew
increases the p value, reducing the probability of inferring
bimodality. The relationship between HDS and skew
derives from proportions > 0 %. As noted earlier, as
distance and proportion increase, skew only increases the
probability of assessing bimodality (put simply, it helps
HDS). The reason for this seems to derive from this brief
description of HDS: The increase in skew may lead to a
sharp increase in the distance along the concave/convex
portions of the observed distribution, thus increasing the
dip statistic and drawing it away from the sampling distri-
bution based on the uniform.

These basic theoretical differences help frame other
results from the simulations. To further compare the BC
and HDS measures, Fig. 4 depicts the distributions for
which the BC and HDS measures were in agreement or
disagreement. The measures had 91 % agreement for zero-
skew distributions, and 71 % agreement for highly positive-
ly skewed distributions. Regardless of skew, disagreements
were found in two areas: low proportions of medium-to-
high distance and high proportions of low distance. Positive
skew exacerbated the amount of disagreement. In disagree-
ments among low proportions of medium-to-high distances,
HDS recognized the distributions as unimodal, whereas BC
recognized them as bimodal. In disagreements among high
proportions of low distances, HDS recognized the distribu-
tions as bimodal, whereas BC recognized them as unimodal.
These disagreements are mainly attributable to the differen-
tial influences of the proportion parameter on BC and HDS
measures, such that the HDS measure was considerably
more calibrated to proportion. For example, a highly posi-
tively skewed distribution of only 5 % proportion was
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recognized as bimodal by the BC measure with a surpris-
ingly low minimum distance of 4 SDs, whereas the required
distance for the HDS measure to detect bimodality for a 5 %
proportion was considerably higher: 7 SDs. This accounts
for the disagreements among low proportions of medium-to-
high distances. As for the other type of disagreements,
involving high proportions of low distances, these are
accounted for by the anomalous interactive effect of skew
and high levels of proportion with the BC measure, dis-
cussed earlier. As proportion increased, BC decreased (rath-
er than increased), especially in highly positively skewed
distributions. Because HDS was immune to these effects,
the two measures disagreed with high proportions of low
distances.

On the basis of our simulation results, we are inclined to
recommend the use of HDS. This is mainly because of its
simultaneous and appropriate calibration to both the dis-
tance and proportion of a dual response population (Mode
2). Although the HDS measure is biased by positive skew,
with greater positive skew overall increasing bimodality
detection (as occurred with the other measures, as well),
skew had minimal interactive influences with other param-
eters, and therefore did not “warp” the results as it did with
other measures. For example, in the BC simulations, skew
interacted with proportion such that higher proportions led
to a raising, rather than a lowering, of the threshold for
detecting bimodality, whereas the HDS measure was im-
mune to this anomalous effect. Furthermore, because the BC
measure was not especially calibrated to proportion, even
the lowest proportions with relatively minimal distances
were recognized as bimodal. Thus, overall, the HDS was a
more robust measure.

As for the AICdiff measure, it proved to be extremely
sensitive to even the most minimal introduction of bimodal
features (the lowest levels of proportion and distance), but
was biased (as it tended not to recognize unimodality), and
thus its utility for distinguishing between unimodality ver-
sus bimodality suffered. However, if a researcher were in-
terested in detecting even the faintest of bimodal features,
the AICdiff measure might be advisable. Previous

discussions of the AIC measure and mixture models had
argued against the measure being used for assessing bimod-
ality due to computational expense (Hartigan & Hartigan,
1985), although nowadays the ready availability of libraries
permits their application easily. Unfortunately, it is not clear
how one could infer confidence on the basis of AIC differ-
ences. Most often, a discrete selection heuristic is used,
although other strategies may be available to characterize
these AIC differences (Wagenmakers & Farrell, 2004).

One concern in conducting distributional analyses is out-
lier screening. Typically, researchers use a standard criterion
somewhere between 2 and 4 SDs to eliminate outliers (Van
Selst & Jolicœur, 1994). An initial issue in outlier screening
is researchers’ distributional assumptions. If researchers do
not anticipate a bimodal or non-Gaussian distribution and do
not explore distributional characteristics, they may eliminate
a dual-response population (Mode 2) altogether, and wrong-
ly consider a meaningful, separate population of responses
to be spurious. A more complicated issue is the fine line
between what could be considered a few outliers versus
what could be considered an actual dual-response popula-
tion (Mode 2). For example, consider the theoretical bimod-
al distribution of mouse trajectories’ attraction toward the
incorrect response from Freeman et al. (2008), composed of
approximately 50 % Mode 1 trajectories and 50 % Mode 2
trajectories, as can be seen in Fig. 1. This bimodal distribu-
tion therefore had an approximate proportion of 50 % and a
distance typical of the two-choice mouse-tracking paradigm.
In that study, the Mode 1 and Mode 2 populations had a
distance of approximately 3 SDs. Thus, if a researcher were
to eliminate outliers exceeding a standard criterion some-
where between 2 and 4 SDs, a hefty portion of the total trials
would have been eliminated, and the Mode 2 population
would have been considerably truncated. The large portion
of eliminated trials might alarm the researcher, leading to a
closer inspection of distributional characteristics. However,
a Mode 2 proportion of only 10 % or 15 % that was shifted
approximately 3 to 4 SDs away from the Mode 1 population
could easily pass as standard outliers without alarm and be
eliminated. In such a case, such shifted responses could

Fig. 4 Grids showing the
simulations in which the BC
and HDS measures agreed in
bimodality detection (white
cells) and simulations in which
the measures disagreed (black
cells), for simulations in which
size02,000
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genuinely reflect a dual-response population (Mode 2) or,
alternatively, outliers.

In such cases, the decision between a dual-response pop-
ulation versus outliers may be difficult and would require
careful consideration of theoretical assumptions. If shifted
responses were considered outliers but in fact reflected a
genuine dual-response population, researchers’ interpreta-
tion of the data would greatly suffer by altogether over-
looking the presence of a dual cognitive process. On the
other hand, if the shifted responses were considered genuine
data (a Mode 2 population), but in reality were mere out-
liers, the BC and HDS measures might spuriously recognize
the distribution as bimodal, so long as it was also positively
skewed. Even with a Mode 2 proportion of only 5 %, the BC
measure would recognize bimodality with the same distance
(approximately 3–4 SDs), so long as the distribution was
positively skewed. The HDS measure would not, however,
as it was more appropriately calibrated to the proportion
parameter. In short, researchers would benefit from carefully
considering whether a collection of shifted responses
reflects a genuine dual-response population (Mode 2) or
spurious outliers, especially in low proportions.

Limitations

It is important to note the limitations of the present work.
First, we have focused here on bimodality estimations in an
“out-of-the-box” style by using readily available methods.
Researchers interested in detailed density estimation techni-
ques may go beyond bimodality and into the domain of
fitting complex mixture models (for some exploration of
the mathematical properties of these measures, see Hartigan
& Hartigan, 1985; Minnotte, 1997; Silverman, 1981; and in
other scientific domains, Hellwig et al., 2010; Milligan &
Cooper, 1985). We hope that the estimations described here
are helpful for researchers and are able to be used as general-
purpose techniques to distinguish unimodal and bimodal
distributions in commonly observed experimental data.
However, some specific cases may warrant more sophisti-
cated estimation techniques that go beyond the scope of this
work.

More generally, bimodality is a complex phenomenon,
and the way that two tandem processes might affect distri-
butional characteristics in psychological experiments is not
always easy to discern. Bimodality may thus potentially
manifest in ways that are not captured by the estimations
described in the present work. Moreover, we have focused
on the limited case of one, albeit highly popular, theoretical
view on multiple cognitive processes: dual-process
accounts. Of course, other views argue for the existence of
three or more cognitive processes, which in some cases
might lead to theoretical predictions of multimodality in-
volving more than two modes. For instance, a popular

model of implicit social cognition is the quadruple-process
model, which posits four distinct processes that contribute to
overt responses in certain implicit measures: association
activation, discriminability, overcoming bias, and guessing
(Conrey, Sherman, Gawronski, Hugenberg, & Groom,
2005). In some cases, distributions of four modes may
therefore be predicted. Fortunately, the HDS and AICdiff

measures are designed to detect multimodality of more than
two modes, but the BC measure is not. And, of course, the
very interpretations of these measures may be called into
question. Some researchers may proffer the interpretation
that any such hypothetical “processes” are in fact different
modes of operation of one general-purpose cognitive sys-
tem. Future research will need to examine how the measures
used here fare with multimodal distributions involving more
than two modes, and how to interpret those processes iden-
tified or proposed.

Another point is that our simulations involved a range of
sample sizes that was relatively large, closer to the number
of observations that would originate from an aggregated
group of participants rather than from individual-
participant data. Indeed, researchers have often estimated
bimodality in such aggregate data sets, and both benefits and
costs are involved when examining distributional character-
istics in group rather than individual participant data (see,
e.g., Vincentizing methods: Ratcliff, 1979). Nevertheless,
the present results should hold true for any distribution,
whether from aggregated data or not. One limitation, how-
ever, is that our smallest distributions contained only 250
observations, and many experimental tasks involve fewer
than 250 trials per participant. That said, we found that
sample size (the “size” parameter) had quite minimal influ-
ences on bimodality detection. For this reason, it is likely
that the same pattern of results would obtain for smaller
samples as well (e.g., 50 observations) that would be closer
to individual-participant data sets. Future work would ben-
efit from examining bimodality detection at a wider range of
sample sizes and from directly comparing the results when
using aggregate versus individual-participant data.

Conclusion

In summary, the analyses presented here offer a comparison
among oft-used bimodality measures that may be added to
the methodological and statistical toolbox of the psycholog-
ical sciences. By utilizing basic tests for bimodality,
researchers may be able to use straightforward methods to
readily test hypotheses about a sample. In fact, some experi-
ments may very well employ these distributional character-
istics as empirical patterns to be predicted and tested in
behavioral experiments (e.g., Dale & Duran, 2011; Freeman
et al., 2008). In these cases, the inference of bimodality may
be a central feature of developing theory. A given debate,
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such as single- versus dual-process models, could accumu-
late data across multiple studies. The significance of even
weak bimodality, if significant at all, should be reproducibly
detected by the techniques that we have described here.

Distinguishing between single-process and dual-process
phenomena has only intensified with the recent advent of
more continuous, temporally fine-grained measures that
track cognition in real time (Freeman & Ambady, 2010;
Spivey & Dale, 2006; Spivey et al., 2005). Whether using
such measures, reaction times, or some other behavioral
measure, analysis of a response distribution’s modality has
been crucial in detecting the presence of a dual process, as
dual processes tend to introduce bimodal features. Although
these facts have been known for at least three decades (e.g.,
Atkinson & Juola, 1973; Ratcliff, 1979), rarely have

measures of bimodality been systematically evaluated and
compared. In our simulations of the BC, HDS, and AICdiff

measures of bimodality, we have found that the HDS may be
overall a more appropriate measure, although this conclu-
sion is qualified by several points discussed above. We hope
that this work proves useful for future research seeking to
distinguish between single-process and dual-process cogni-
tive phenomena, and more generally for calling greater
attention to the response distribution in understanding
cognition.
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Appendix: MATLAB code for BC, AICdiff, and HDS

In all of the code below, x is a vector containing a single
sample.

BC 
function [b] = bmtest(x) 

%m3 = skew 
%m4 = kurt 
%n = data size 
m3 = skew(x); 
m4 = kurtosis(x); 
n = length(x); 
b=(m3^2+1)  /  (m4 + 3 * ( (n-1)^2  /  ((n-2)*(n-3))  )); 

AICdiff

f1 = gmdistribution.fit(x,1); % single component, unimodal 
f2 = gmdistribution.fit(x,2); % two components, bimodal 
AICd = (f1.AIC-f2.AIC)/max([f1.AIC,f2.AIC]) 

HDS 
% Utilizing function by F. Mechler, 2002 translated into MATLAB, found at: 
% http://www.nicprice.net/diptest/ 

[dip,p_value,xlow,xup] = HartigansDipSignifTest(x,500); 
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