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Supplementary Material 

Model and Simulation Method 

 To illustrate why more unstable White–Black category activation dynamics are predicted 

for low-exposure participants when they confront racial ambiguity, we conducted a simulation 

using a new instantiation of the Dynamic Interactive (DI) Model of social categorization 

(Freeman & Ambady, 2011). The model has a recurrent connectionist architecture with 

stochastic interactive activation (McClelland, 1991; Rumelhart, Hinton, & McClelland, 1986). 

Depicted in Fig. S1, this new instantiation of the model provides an approximation of the kind of 

processing that might take place in a human brain (Rogers & McClelland, 2004; Rumelhart et al., 

1986; Smolensky, 1989; Spivey, 2007), specifically in the context of perceiving a face’s race and 

depending on one’s interracial exposure. 

 

 
 

 

Figure S1. A new instantiation of the Dynamic Interative (DI) Model of social categorization. 
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 Initially, the network is stimulated simultaneously by both visual input and higher-level 

input. Visual input originates from the visual system, which processing an incoming face 

stimulus, and higher-level input in this case originates from a top-down attentional system, 

which directs attention toward particular categories based on the current task (to categorize race). 

The network contains a collection of nodes, and each node is associated with a transient level of 

activation at each moment in time. This activation corresponds with the strength of a tentative 

hypothesis that the node is represented in the input. The nodes in this network are organized into 

four levels of processing: cue nodes (visual detectors for facial features), category nodes (social 

category representations), stereotype nodes (stereotype attributes and social-conceptual 

knowledge), and higher-order nodes (task demands). Once the network is initially stimulated, 

activation flows among all nodes as a function of their connection weights. Because connections 

between nodes are bidirectional, this flow results in a dynamic back-and-forth of activation 

between all nodes in the system. As such, nodes in the system continually readjust each other’s 

activation and mutually constrain one another to find an overall pattern of activation that best fits 

the given inputs. Gradually, the flows of activation lead the network to converge on a stable, 

steady state, where the activation of each node reaches an asymptote (i.e., an attractor; see Fig. 1 

of the main text). This final steady state corresponds to an ultimate race categorization.  

A critical aspect of the model is that, as facial cues automatically activate categories, 

those categories in turn automatically activate knowledge structures (stereotypes). Those 

knowledge structures in the stereotype level, in turn, provide an immediate constraint on 

category activation, providing top-down feedback to the category level (Freeman & Ambady, 

2011; Freeman et al., 2011). Thus, conceptual knowledge and stereotypes are spontaneously 

activated in a manner that, in turn, shapes the race categorization process. Accordingly, there are 

two simultaneous forces at play that drive race categorization (category level): bottom-up visual 

processing (from the cue level) and top-down conceptual processes (from the stereotype level).  

In response to a mixed-race face, the network seeks to settle into the stable, lower-energy 

attractors (White or Black) due to learned conceptual knowledge. At the same time, dynamic 

visual processing of mixed-race cues creates bottom-up pressure that works against the natural 

descent of the system into the attractors (pushing White and Black category activations closer 

together and driving the system back up toward the ridge between the two attractors). Because 

we predict the White and Black attractors to be more differentiated in low-exposure perceivers 
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(deeper and farther apart, creating a steeper descent), the system will experience a stronger “pull” 

to settle down into the White and Black categories, while visual processing of mixed-race cues 

“pushes” against the attraction, causing more unstable dynamics for the low-exposure network. 

In other words, a mixed-race face creates instability for the perceptual system of a low-exposure 

perceiver because bottom-up visual processing attempts to bring together two race categories that 

top-down conceptual knowledge is trying to strongly pull apart. The force of this “pulling apart” 

due to conceptual knowledge is stronger in low-exposure perceivers, as the category 

representations are more distinct. We predict that this bottom-up “pushing” of race category 

activations together (due to racial ambiguity) and top-down “pulling” of race categories apart 

(forcing a race categorization in line with learned conceptual knowledge) will create uniquely 

unstable dynamics in low-exposure perceivers. Thus, a more unstable experience is expected 

when the low-exposure neural network encounters racial ambiguity, even though there need not 

be any increase in the overall amount of competition. 

 

Structure of the DI Model 

 In the DI Model, before the presentation of a face stimulus, activations of all nodes in the 

network are set equal to a resting activation value (zero), and external inputs are presented to 

certain nodes for processing. Processing occurs over a number of iterations. On each iteration, 

each node computes its net input from the nodes connected to it based on their latest activation 

(excitation and inhibition are summed together), as well as any external input into the node. 

Because the model is stochastic, the input is also altered by normally distributed noise. 

Specifically, the net input to node i is: 

 

 ij

j

iji extownet  

 

where wij is the connection weight to node i from node j, oj is the greater of 0 and the activation 

of node j, exti is any external input to node i, and εσ is a small amount of normally distributed 

random noise with mean 0 and standard deviation σ. Once the net input into all nodes has been 

computed, the activation of node i is updated as: 
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such that M is the maximum activation, m is the minimum activation, r is the resting activation 

level, I is a constant that scales the influence of external inputs on a node, and D is a constant 

that scales a node’s tendency to decay back to rest. The parameters are as follows: M = 1, m = –

0.2, r = 0, I = 0.4, D = 0.1, and σ = 0.01. Network parameters, connection weights, and input 

values were set based on our prior studies, intuitions regarding stimulus and task features, and 

previous simulations. See Freeman and Ambady (2011) for complete details on the DI Model. 

 

Modeling interracial exposure 

 We developed two variants of the model instantiation (low-exposure and high-exposure 

networks); connection weights for both networks are provided in Table S1. What distinguishes 

the low-exposure and high-exposure network is the connections between race categories and 

conceptual knowledge (stereotypes), i.e., category–stereotype connections. Specifically, in the 

high-exposure network, the WHITE and BLACK categories were modeled as conceptually more 

similar, as high exposure leads such categories to be represented with greater similarity and 

overlapping characteristics (Allport, 1954; Dovidio, Gaertner, & Kawakami, 2003). To model 

this overlap, we included three stereotype nodes: one to represent exclusively White-related 

stereotype attributes (e.g., INTELLIGENT), having an excitatory connection with WHITE and 

inhibitory connection with BLACK; one to represent exclusively Black-related attributes (e.g., 

HOSTILE), having an excitatory connection with BLACK and inhibitory connection with WHITE; 

and critically, one to represent overlapping attributes (SHARED ASSOCIATIONS), having mutual 

excitatory connections with both race categories (see Fig. S1). The low-exposure and high-

exposure network differ only in that the presence of the SHARED ASSOCIATIONS node was 

stronger in the high-exposure network, such that its connections were stronger (i.e., stronger 

excitatory connections with race categories, and stronger inhibitory connections with non-

overlapping stereotypes; see Table S1). This represents the effects of high interracial exposure, 

with stronger conceptual overlap and shared attributes between the White and Black categories.  
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Table S1. Connection weights for the low-exposure and high-exposure networks. 

Note: All connections are bidirectional and symmetrical. Shared stereotypes refer to the SHARED 

ASSOCIATIONS node (positively related to both WHITE and BLACK), and non-shared stereotypes 

refer to the INTELLIGENT node (positively related to WHITE and negatively related to BLACK) and 

the HOSTILE node (positively related to BLACK and negatively related to WHITE). 

 

Connection Low-

exposure 

High-

exposure 

Category‒Stereotype (shared) excitation .4 .6 

Stereotype (shared)‒Stereotype (non-shared) inhibition ‒.2 ‒.4 

Category‒Stereotype (non-shared) excitation .8 .8 

Category‒Stereotype (non-shared) inhibition ‒.4 ‒.4 

Stereotype (non-shared)‒Stereotype (non-shared) inhibition ‒.4 ‒.4 

Cue‒Cue inhibition ‒.1 ‒.1 

Cue‒Category excitation .25 .25 

Cue‒Category inhibition ‒.25 ‒.25 

Higher-order‒Category excitation .8 .8 

Category‒Category inhibition ‒.7 ‒.7 

 

 

 As theoretically predicted (see Fig. 1 of the main text), a stronger presence (high-

exposure) vs. weaker presence (low-exposure) of shared associations influenced the shape of the 

attractors to which the networks gravitated, i.e., the White and Black category representations. 

To visualize the attractors, we estimated energy landscapes associated with the two networks. 

Specifically, at a given state of the network, the network’s energy was calculated as: 
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where wij is the connection weight to node i from node j, and ai and aj are the respective node’s 

activation. Energy landscapes associated with the two networks are depicted in Fig. S2, showing 

that the White and Black category attractors (indicated by energy minima) were more 

distinguished, including farther apart and deeper, in the low-exposure (distance: 0.76, relative 

depth: 0.24) than high-exposure (distance: 0.64, relative depth: 0.17) network, consistent with 

our predictions. 
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Figure S2. Energy landscapes associated with the low-exposure and high-exposure networks, 

where the network’s energy is plotted as a function of the WHITE and BLACK nodes’ activation. 

The White and Black attractors (energy minima) are more distinct, with increased distance and 

depth, in the low-exposure network.  

 

Simulations 

For both the low-exposure and high-exposure network, we conducted 3 simulation types 

(White face, ambiguous face, Black face) and ran each type 1,000 times. Thus, we ran a total of 

6,000 simulations (akin to 6,000 human trials). For all simulation types, input into the RACE 

TASK DEMAND node was set at .6, simulating the task demand that requires attention on race. For 

the White face condition, we set input into the WHITE CUES node at 1 and into the BLACK CUES 

node at 0, and vice-versa for the Black face condition. For the ambiguous face condition, we set 

input into both nodes at .5. This rendered visual input equibiased with respect to a face’s race in 

the ambiguous condition, thereby causing both categories to co-activate early in the 

categorization process until small amounts of noise in the system eventually led one category to 

win out and the other to decay. After 300 iterations, we selected the race-category node with the 

highest activation as the network’s categorization response.  

For each simulation trial, we estimated MD as the unselected category node’s maximum 

activation level across all 300 iterations, divided by the maximum activation level of the selected 

category node’s activation. As such, this reflected the extent to which the unselected category 
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was partially activated in parallel, thereby providing an index of overall competition. For each 

simulation trial, we provided an estimate of x-flips using the same equation described in the main 

text, except measuring changes in the relative direction between the WHITE and BLACK category 

nodes’ activations rather than x-coordinates from mouse-tracking. For example, if from t ‒ 1 to t 

the WHITE category is gaining activation and the BLACK category is losing activation, but from t 

– 2 to t ‒ 1 the WHITE category was losing activation and the BLACK category was gaining 

activation, this would increase the x-flip count by 1. Specifically, if the difference in WHITE and 

BLACK category nodes’ activation at time t is dt = wt – bt, then: 

 

x-flips )])(([ 211   tttt ddddH  

As with the actual x-flips measure in mouse-tracking, we first smoothed the two activation time 

series using a sliding average in order to detect larger-scale directional changes in category 

activation rather than small, random perturbations. For the actual x-flips mouse-tracking 

measure, we had applied 5% smoothing (a sliding average across a window of 5 time bins in a 

total time series of 100 time bins). Accordingly, for our simulations we applied 5% smoothing as 

well (a sliding average across a window of 15 iterations in a total time series of 300 iterations). 

 

Simulation Results 

For analyses, we aggregated simulations of White and Black faces to permit a 

comparison between typical and ambiguous faces. To approximate the x-flips counts observed 

with human participants, each trial’s x-flips count was divided by a constant of 6.5. Predictably, 

a network exposure (low-exposure, high-exposure) × racial ambiguity (ambiguous, typical) 

ANOVA on MD indicated a large effect of ambiguity, F(1, 5996) = 85372.24, p < .0001, with 

higher MD for ambiguous trials. Specifically, the MD ambiguity effect in the low-exposure 

network [M = 0.697, SE = 0.004; t(2998) = 199.37, p < .0001] was highly significant, as was the 

MD ambiguity effect in the high-exposure network [M = 0.692, SE = 0.003; t(2998) = 214.82, p 

< .0001]. Critically, however, these effects did not differ across low- and high-exposure 

networks, as the racial ambiguity × exposure interaction was not significant, F(1, 5996) = 0.98, p 

= .321. A network exposure (low-exposure, high-exposure) × racial ambiguity (ambiguous, 

typical) ANOVA on x-flips also indicated a large effect of racial ambiguity, F(1, 5996) = 

1794.98, p < .0001, but more importantly, a significant racial ambiguity × exposure interaction, 
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F(1, 5996) = 8.977, p = .003. This was because the x-flips ambiguity effect (higher x-flips for 

ambiguous relative to typical trials) in the low-exposure network [M = 0.893, SE = 0.027; 

t(2998) = 32.62, p < .0001] was considerably stronger than in the high-exposure network [M = 

0.775, SE = 0.028; t(2998) = 27.40, p < .0001]. These results therefore converge with the data 

from the mouse-tracking tasks with human participants of Studies 1 and 2 (described in the main 

text), where low-exposure relative to high-exposure participants exhibited more abrupt category 

shifts (x-flips) but not overall category competition (MD) for racially-ambiguous faces. 
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